Problem Set 1

The next several problems are concerned with Sylvester's matrix and the Sylvester determinant. Assume coefficients are drawn from some fixed algebraically closed field.

Problem 1. Let $F_{1}=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ and $F_{2}=b_{m} x^{m}+$ $b_{m-1} x^{m-1}+\cdots+b_{0}$. Show that F_{1} and F_{2} share a root if and only if there exists G, H with $\operatorname{deg}(G)=m-1, \operatorname{deg}(H)=n-1$ and $G F_{1}=H F_{2}$.

Problem 2. Let $S=\left\{F_{1}, x F_{1}, \ldots, x^{m-1} F_{1}, F_{2}, x F_{2}, \ldots, x^{n-1} F_{2}\right\}$ and let P_{t} denote the vector space of all polynomials of degree less than or equal to t. Use the result in Problem 1 to show that S is a linearly dependent set of vectors in P_{m+n-1} if and only if F_{1} and F_{2} share a root.

Problem 3. By writing each element of S in terms of the basis $\left\{1, x, x^{2}, \ldots, x^{m+n-1}\right\}$, produce an $(m+n) \times(m+n)$ matrix M. Then use the previous problems to conclude that $\operatorname{det}(M)=0$ if and only if F_{1}, F_{2} share a root.

Problem 4. Devise an algorithm to determine how many roots F_{1} and F_{2} share.

Problem 5. Suppose $F_{1}=a x^{2}+b x+c$ and $F_{2}=d x^{2}+e x+f$ share a root. Can you conclude that $G_{1}=c x^{2}+b x+a$ and $G_{2}=f x^{2}+e x+d$ share a root?

Problem 6. Let $M=\left[\begin{array}{lllll}a & b & c & 0 & 0 \\ 0 & a & b & c & 0 \\ 0 & 0 & a & b & c \\ d & e & f & g & 0 \\ 0 & d & e & f & g\end{array}\right]$. Assuming $a, d \neq 0$, show that $\operatorname{det}(M)=0$ if and only if there is an element in the null space of M of the form $\left[\begin{array}{c}r^{4} \\ r^{3} \\ r^{2} \\ r \\ 1\end{array}\right]$ for some r.

Problem 7. Use Sylvester's determinant to find the discriminant of $F=$ $a x^{3}+b x^{2}+c x+d$ (assume $a \neq 0$).

The next two problems and the remark following them are about Vandermonde matrices:

Problem 8. It is easy to check that $\operatorname{det}\left[\begin{array}{ll}1 & 1 \\ a & b\end{array}\right]=(b-a)$. Now consider the matrix $M=\left[\begin{array}{ccc}1 & 1 & 1 \\ a & b & x \\ a^{2} & b^{2} & x^{2}\end{array}\right]$. Show that $\operatorname{det}(M)=(b-a) F(x)$ where $F(x)$ is a monic degree 2 polynomial which factors as $F(x)=(x-a)(x-b)$. Conclude that det $\left[\begin{array}{ccc}1 & 1 & 1 \\ a & b & c \\ a^{2} & b^{2} & c^{2}\end{array}\right]=(b-a)(c-a)(c-b)$.

Problem 9. As a follow up to the previous problem, show that

$$
\operatorname{det}\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
a & b & c & x \\
a^{2} & b^{2} & c^{2} & x^{2} \\
a^{3} & b^{3} & c^{3} & x^{3}
\end{array}\right]=(b-a)(c-a)(c-b) F(x)
$$

where $F(x)$ is a monic degree 3 polynomial which factors as $F(x)=(x-$ a) $(x-b)(x-c)$.

Remark 10. Let $M=\left[\begin{array}{cccc}1 & 1 & \ldots & 1 \\ x_{1} & x_{2} & \ldots & x_{n} \\ x_{1}^{2} & x_{2}^{x} & \ldots & x_{n}^{2} \\ \ldots & \ldots & \ldots & \ldots \\ x_{1}^{n-1} & x_{2}^{n-1} & \ldots & x_{n}^{n-1}\end{array}\right]$. The previous 2 problems
demonstrate how you could inductively prove that $\operatorname{det}(M)=\Pi_{i>j}\left(x_{i}-x_{j}\right)$. M is called a Vandermonde matrix. Note that if values are plugged in for $x_{1}, x_{2}, \ldots, x_{n}$ then the matrix is nonsingular if and only if all the values are distinct. As a consequence, any subset of the columns are linearly independent. This may be useful in the next problem (depending on how you choose to solve it).

Problem 11. If M is an $n \times n$ matrix, define the corank of M to be $n-$ $\operatorname{rank}(M)$. Show that if 2 polynomials share t distinct roots, then the corank of the associated Sylvester matrix is at least t.

