Problem Set 1

The next several problems are concerned with Sylvester's matrix and the Sylvester determinant. Assume coefficients are drawn from some fixed algebraically closed field.

Problem 1. Let $F_1 = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ and $F_2 = b_m x^m + b_{m-1} x^{m-1} + \cdots + b_0$. Show that F_1 and F_2 share a root if and only if there exists G, H with deg(G) = m - 1, deg(H) = n - 1 and $GF_1 = HF_2$.

Problem 2. Let $S = \{F_1, xF_1, \ldots, x^{m-1}F_1, F_2, xF_2, \ldots, x^{n-1}F_2\}$ and let P_t denote the vector space of all polynomials of degree less than or equal to t. Use the result in Problem 1 to show that S is a linearly dependent set of vectors in P_{m+n-1} if and only if F_1 and F_2 share a root.

Problem 3. By writing each element of S in terms of the basis $\{1, x, x^2, \ldots, x^{m+n-1}\}$, produce an $(m+n) \times (m+n)$ matrix M. Then use the previous problems to conclude that det(M) = 0 if and only if F_1, F_2 share a root.

Problem 4. Devise an algorithm to determine how many roots F_1 and F_2 share.

Problem 5. Suppose $F_1 = ax^2 + bx + c$ and $F_2 = dx^2 + ex + f$ share a root. Can you conclude that $G_1 = cx^2 + bx + a$ and $G_2 = fx^2 + ex + d$ share a root?

Problem 6. Let
$$M = \begin{bmatrix} a & b & c & 0 & 0 \\ 0 & a & b & c & 0 \\ 0 & 0 & a & b & c \\ d & e & f & g & 0 \\ 0 & d & e & f & g \end{bmatrix}$$
. Assuming $a, d \neq 0$, show that $det(M) = 0$ if and only if there is an element in the null space of M of the form $\begin{bmatrix} r^4 \\ r^3 \\ r^2 \\ r \\ 1 \end{bmatrix}$ for some r .

Problem 7. Use Sylvester's determinant to find the discriminant of $F = ax^3 + bx^2 + cx + d$ (assume $a \neq 0$).

The next two problems and the remark following them are about Vandermonde matrices:

Problem 8. It is easy to check that $det \begin{bmatrix} 1 & 1 \\ a & b \end{bmatrix} = (b-a)$. Now consider the matrix $M = \begin{bmatrix} 1 & 1 & 1 \\ a & b & x \\ a^2 & b^2 & x^2 \end{bmatrix}$. Show that det(M) = (b-a)F(x) where F(x) is a monic degree 2 polynomial which factors as F(x) = (x-a)(x-b). Conclude that $det \begin{bmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{bmatrix} = (b-a)(c-a)(c-b)$.

Problem 9. As a follow up to the previous problem, show that

$$det \begin{bmatrix} 1 & 1 & 1 & 1 \\ a & b & c & x \\ a^2 & b^2 & c^2 & x^2 \\ a^3 & b^3 & c^3 & x^3 \end{bmatrix} = (b-a)(c-a)(c-b)F(x)$$

where F(x) is a monic degree 3 polynomial which factors as F(x) = (x - a)(x - b)(x - c).

Remark 10. Let
$$M = \begin{bmatrix} 1 & 1 & \dots & 1 \\ x_1 & x_2 & \dots & x_n \\ x_1^2 & x_2^x & \dots & x_n^2 \\ \dots & \dots & \dots & \dots \\ x_1^{n-1} & x_2^{n-1} & \dots & x_n^{n-1} \end{bmatrix}$$
. The previous 2 problems

demonstrate how you could inductively prove that $det(M) = \prod_{i>j}(x_i - x_j)$. M is called a Vandermonde matrix. Note that if values are plugged in for x_1, x_2, \ldots, x_n then the matrix is nonsingular if and only if all the values are distinct. As a consequence, any subset of the columns are linearly independent. This may be useful in the next problem (depending on how you choose to solve it).

Problem 11. If M is an $n \times n$ matrix, define the corank of M to be n - rank(M). Show that if 2 polynomials share t distinct roots, then the corank of the associated Sylvester matrix is at least t.