Problem Set 10

For this entire problem set, $R=k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ with k a field.

Recall that if $F, g_{1}, g_{2}, \ldots, g_{t} \in R$, then there is an expression of the form:

$$
G=F-\sum_{i=1}^{t} a_{i} g_{i} \text { where } a_{i} \in R \text { and }
$$

1) None of the monomials of G are in $\left(i n_{>}\left(g_{1}\right), i n_{>}\left(g_{2}\right), \ldots, i n_{>}\left(g_{t}\right)\right)$.
2) $i n_{>}(F) \geq i n_{>}\left(a_{i} g_{i}\right)$ for every i.

Also recall that such a G is called a remainder upon dividing F by the elements $g_{1}, g_{2}, \ldots, g_{t}$ and that such remainders are not usually unique.

Problem 1. Show that if $G=\left\{g_{1}, g_{2}, \ldots, g_{t}\right\}$ is a Gröbner basis and $F \in R$ then the remainder upon dividing F by the elements of G is unique.

Problem 2. Let $I=\left(x^{3} y-x^{2}, x^{2}-x y\right)$. Compute $I: x^{2}$ using the algorithm for ideal quotients. (You can use Macaulay 2, just don't use the ideal quotient command).

Problem 3. Let $F \in R$ and let I be an ideal in R. Let $J=(I, 1-F y)$ be an ideal in $k\left[x_{1}, \ldots, x_{n}, y\right]$. Show that $I: F^{\infty}=J \cap k\left[x_{1}, \ldots, x_{n}\right]$.

Problem 4. Show that $\operatorname{rad}(I \cap J)=\operatorname{rad}(I) \cap \operatorname{rad}(J)$.
The next problem is a bit silly once you discover the answer. Still it illustrates how you need to be a bit careful.

Problem 5. Give an example to show that $\operatorname{rad}(I J) \neq \operatorname{rad}(I) \operatorname{rad}(J)$.

The following is an unsolved problem. Maybe one of you will solve it some day (or even this weekend). I will state it purely as an algebra problem. Geometrically, the problem is asking if the monomial quartic curve in \mathbb{P}^{3} is a "set theoretic complete intersection". A more general open problem: "Is every irreducible curve in \mathbb{P}^{3} a set theoretic complete intersection?". It is surprising that the answer is not even known for the monomial quartic.

Problem 6. Let $I=\left(b c-a d, c^{3}-b d^{2}, b^{3}-a^{2} c, a c^{2}-b^{2} d\right)$ be an ideal in $S=$ $\mathbb{C}[a, b, c, d]$. Do there exist two homogeneous polynomials $F, G \in S$ such that $\operatorname{rad}(F, G)=I$?

