Problem Set 11

For this entire problem set, $R = k[x_1, x_2, \dots, x_n]$ with k a field.

Let $F \in k[x_1, x_2, ..., x_n]$. F can be written as a sum $F = \sum_i F_i$ where each F_i is homogeneous of degree *i*. Recall that an ideal, *I*, is homogeneous if $F \in I \implies F_i \in I$ for each *i*.

Problem 1. Prove that an ideal is homogeneous \iff the ideal is generated by a finite set of homogeneous forms.

Problem 2. Let R = k[x, y, z]. Let F be an irreducible form of degree t. Let $\Gamma = \Gamma(V(F))$. Consider the exact sequence $0 \to R \xrightarrow{\times F} R \to \Gamma \to 0$. Let $\Gamma_d = \{Forms \text{ of degree } d \text{ in } \Gamma\}.$

a) Show that Γ_d is a finite dimensional k-vector space.

b) Find $\dim_k(\Gamma_d)$.

Recall that to \mathbb{P}^n we can associate a dual space \mathbb{P}^{n*} . Each point in \mathbb{P}^n corresponds to a hyperplane in \mathbb{P}^{n*} by $[a_1 : a_2 : \cdots : a_n] \to V(\sum_i a_i y_i)$. To a linear space, $L \in \mathbb{P}^n$ we can associate a linear space $L^* \in \mathbb{P}^{n*}$ by $L^* = \bigcap_{P \in L} P^*$.

Problem 3. Let $L = V(w + y + z, w + x + 2y + z) \subseteq \mathbb{P}^3$. Find $I(L^*) \subseteq \mathbb{P}^{3*}$.

Problem 4. Let $I = (w^2 - x, w^3 - y, w^4 - z) \subseteq k[w, x, y, z]$. Let $J = (w^2 - xh, w^3 - yh^2, w^4 - zh^3)$.

a) Find the ideal of the projective closure of V(I) by computing $L = J : h^{\infty}$ where h is the homogenizing variable.

b) Find the ideal of the projective closure of V(I) by computing a Gröbner basis of I with respect to glex then homogenize the elements in the Gröbner basis to get an ideal L'.

c) Check that L = L'.

Problem 5. Let $I = (x^2 - y, x^3 - z)$. Let I^h be the homogenization of I with respect to h. Let $J = (x^2 - yh, x^3 - zh^2)$.

- a) Check that $J = I^h \cap (J : I^h)$.
- b) Find $rad(J: I^h)$.

c) I^h is a radical ideal and $rad(J) = rad(I^h) \cap rad(J : I^h)$. Use this to compute rad(J).

Problem 6. a) The Veronese surface, $V \subseteq \mathbb{P}^5$, is the projective closure of the image of the map $\phi : \mathbb{A}^2 \to \mathbb{A}^5$ given by $\phi(x, y) = (x, y, x^2, xy, y^2)$. Find the ideal of the projective closure.

b) We can also obtain the Veronese surface by considering the map $\phi : \mathbb{P}^2 \to \mathbb{P}^5$ given by $\phi([x:y:z]) \to [x^2:xy:xz:y^2:yz:z^2]$. Find the ideal of the Veronese using this map.

Let t be one less than the number of degree s monomials in s + 1 variables. The d-uple embedding of \mathbb{P}^s into \mathbb{P}^t is given by $\phi([x_0 : x_1 : \cdots : x_s] = [x^{\alpha_0} : x^{\alpha_2} : \cdots : x^{\alpha_t}]$ where $\alpha_0, \alpha_1, \ldots, \alpha_t$ is a basis for space of monomials of degree d in s + 1 variables. The Veronese surface from the previous problem is the 2-uple embedding of \mathbb{P}^2 into \mathbb{P}^5 .

Problem 7. Find the ideal of the 3-uple embedding of \mathbb{P}^2 into \mathbb{P}^9 .