Problem Set 11

For this entire problem set, $R=k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ with k a field.
Let $F \in k\left[x_{1}, x_{2}, \ldots, x_{n}\right] . \quad F$ can be written as a sum $F=\sum_{i} F_{i}$ where each F_{i} is homogeneous of degree i. Recall that an ideal, I, is homogeneous if $F \in I \Longrightarrow F_{i} \in I$ for each i.

Problem 1. Prove that an ideal is homogeneous \Longleftrightarrow the ideal is generated by a finite set of homogeneous forms.

Problem 2. Let $R=k[x, y, z]$. Let F be an irreducible form of degree t. Let $\Gamma=\Gamma(V(F))$. Consider the exact sequence $0 \rightarrow R \xrightarrow{\times F} R \rightarrow \Gamma \rightarrow 0$. Let $\Gamma_{d}=\{$ Forms of degree d in $\Gamma\}$.
a) Show that Γ_{d} is a finite dimensional k-vector space.
b) Find $\operatorname{dim}_{k}\left(\Gamma_{d}\right)$.

Recall that to \mathbb{P}^{n} we can associate a dual space $\mathbb{P}^{n *}$. Each point in \mathbb{P}^{n} corresponds to a hyperplane in $\mathbb{P}^{n *}$ by $\left[a_{1}: a_{2}: \cdots: a_{n}\right] \rightarrow V\left(\sum_{i} a_{i} y_{i}\right)$. To a linear space, $L \in \mathbb{P}^{n}$ we can associate a linear space $L^{*} \in \mathbb{P}^{n *}$ by $L^{*}=\cap_{P \in L} P^{*}$.

Problem 3. Let $L=V(w+y+z, w+x+2 y+z) \subseteq \mathbb{P}^{3}$. Find $I\left(L^{*}\right) \subseteq \mathbb{P}^{3 *}$.

Problem 4. Let $I=\left(w^{2}-x, w^{3}-y, w^{4}-z\right) \subseteq k[w, x, y, z]$. Let $J=\left(w^{2}-\right.$ $\left.x h, w^{3}-y h^{2}, w^{4}-z h^{3}\right)$.
a) Find the ideal of the projective closure of $V(I)$ by computing $L=J: h^{\infty}$ where h is the homogenizing variable.
b) Find the ideal of the projective closure of $V(I)$ by computing a Gröbner basis of I with respect to glex then homogenize the elements in the Gröbner basis to get an ideal L^{\prime}.
c) Check that $L=L^{\prime}$.

Problem 5. Let $I=\left(x^{2}-y, x^{3}-z\right)$. Let I^{h} be the homogenization of I with respect to h. Let $J=\left(x^{2}-y h, x^{3}-z h^{2}\right)$.
a) Check that $J=I^{h} \cap\left(J: I^{h}\right)$.
b) Find $\operatorname{rad}\left(J: I^{h}\right)$.
c) I^{h} is a radical ideal and $\operatorname{rad}(J)=\operatorname{rad}\left(I^{h}\right) \cap \operatorname{rad}\left(J: I^{h}\right)$. Use this to compute $\operatorname{rad}(J)$.

Problem 6. a) The Veronese surface, $V \subseteq \mathbb{P}^{5}$, is the projective closure of the image of the map $\phi: \mathbb{A}^{2} \rightarrow \mathbb{A}^{5}$ given by $\phi(x, y)=\left(x, y, x^{2}, x y, y^{2}\right)$. Find the ideal of the projective closure.
b) We can also obtain the Veronese surface by considering the map $\phi: \mathbb{P}^{2} \rightarrow \mathbb{P}^{5}$ given by $\phi([x: y: z]) \rightarrow\left[x^{2}: x y: x z: y^{2}: y z: z^{2}\right]$. Find the ideal of the Veronese using this map.

Let t be one less than the number of degree s monomials in $s+1$ variables. The d-uple embedding of \mathbb{P}^{s} into \mathbb{P}^{t} is given by $\phi\left(\left[x_{0}: x_{1}: \cdots: x_{s}\right]=\left[x^{\alpha_{0}}\right.\right.$: $\left.x^{\alpha_{2}}: \cdots: x^{\alpha_{t}}\right]$ where $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{t}$ is a basis for space of monomials of degree d in $s+1$ variables. The Veronese surface from the previous problem is the 2-uple embedding of \mathbb{P}^{2} into \mathbb{P}^{5}.

Problem 7. Find the ideal of the 3-uple embedding of \mathbb{P}^{2} into \mathbb{P}^{9}.

