## Problem Set 12

For this entire problem set, $R=k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ with $k$ a field.

Recall that $R=k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ is a graded ring by the decomposition $R=$ $\bigoplus_{d>0} R_{d}$ where $R_{d}$ is the space spanned by the monomials of degree $d$. Given a graded $R$-module, $M$, we can define the Hilbert function $\phi_{M}$ of $M$ by $\phi_{M}(t)=$ $\operatorname{dim}_{k}\left(M_{t}\right)$ for each $t \in \mathbb{Z}$. We have the following theorem:

Theorem 1. (Hilbert-Serre) Let $M$ be a finitely generated graded $R=k\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ module. There is a unique polynomial $P_{M}(t) \in \mathbb{Q}[t]$ such that $\phi_{M}(t)=P_{M}(t)$ for $t \gg 0$.

The polynomial that appears in the theorem above is called the Hilbert Polynomial of $M$. In the near future, we will have tools that will enable us to compute the Hilbert Polynomial. For now, we must be satisfied to compute the Hilbert Function.

For now I will let dimension be defined intuitively, the empty set will have dimension -1 , points will have dimension 0 , curves will have dimension 1 , etc. Later we will give a more precise definition of dimension.

Recall the following lemma from Problem Set 9:

Lemma 2. Let $R=k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. Let $F \in R$. There is a short exact sequence of the form

$$
0 \rightarrow R /(I: F) \rightarrow R / I \rightarrow R /(I, F) \rightarrow 0 .
$$

If we assume the $\operatorname{deg}(F)=d$, then we can make the exact sequence respect the grading by noting that

$$
0 \rightarrow(R /(I: F))_{t} \xrightarrow{\times F}(R / I)_{t+d} \rightarrow(R /(I, F))_{t+d} \rightarrow 0 .
$$

This might be helpful in the following problems.

Problem 3. a) Let $I=\left(x^{3}, y^{2}, z\right)$. Compute the Hilbert Function of $k[x, y, z] / I$.
b) What is the dimension of $V(I)$ as a set in $\mathbb{P}^{2}$ ?

Problem 4. a) Let $P_{1}, P_{2}, P_{3}$ be your favorite 3 non-collinear points in $\mathbb{P}^{2}$. Let $I$ be the homogeneous ideal of the union of these 3 points. Compute the Hilbert Function of $R / I$.
b) What is the dimension of $V(I)$ ?

Problem 5. Let I be the homogeneous ideal of the 3-uple embedding of $\mathbb{P}^{1}$ into $\mathbb{P}^{3}$. Compute the Hilbert Function of $R / I$.
b) What is the dimension of $V(I)$ ?

Problem 6. a) Do you notice any pattern in the previous 3 problems?
b) Test your guess on $R / I$ where $I$ is the 2-uple embedding of $\mathbb{P}^{2}$ into $\mathbb{P}^{5}$.

Let $V \subset \mathbb{P}^{2}$ be a smooth planar curve defined as the zeroes of the irreducible homogeneous polynomial $F \in k[x, y, z]$. The tangent line to $V$ at $P$ is defined to be the zeroes of $x F_{x}(P)+y F_{y}(P)+z F_{z}(P)$. Define a map $\phi: V \rightarrow\left(\mathbb{P}^{2}\right)^{*}$ by $\phi(P)=$ the dual of the tangent line to $V$ at $P . V^{*}$ is defined to be the image of this map.

If $F \in k[x, y, z]$ and $F^{*} \in k[X, Y, Z]$ then we can compute $F^{*}$ by $F^{*}=$ ( $\left.X-F_{x}, Y-F_{y}, Z-F_{z}, F\right) \cap k[X, Y, Z]$ (you should think about why this is true!).

The singularities of $F$ can be determined by looking for singularities on each of the 3 affine pieces (or by noting that the singularities occur at the points where $F_{x}=F_{y}=F_{z}=0$ ).

Problem 7. a) Let $V=V\left(x^{2}+3 y z+y^{2}\right)$. Is $V^{*}$ singular?
b) Find the equation which defines $V^{*}$.
c) Is $V^{*}$ singular?

Problem 8. a) Let $V=V\left(x^{3}+3 x y z+y^{2} z+z^{3}\right)$. Is $V$ singular?
b) Find the equation which defines $V^{*}$.
c) Is $V^{*}$ singular?

Problem 9. If $V$ is non-singular but $V^{*}$ is singular, what might be the source of these singularities? (Think geometrically!)

Problem 10. Try computing $V^{* *}$ for a couple of examples. Does it seem $V=$ $V^{* *}$ ?

Problem 11. Do you see how you could define $V^{*}$ if $V$ is a surface in $\mathbb{P}^{3}$ ?

