Problem Set 13

Problem 1. It is a well known theorem that the diagonals of a parallelogram bisect each other. If A, B, C, D are the vertices of the parallelogram and if M is the point where the diagonals intersect then the theorem can be shown to be true by showing that the condition $\left(M_{1}-C_{1}\right)^{2}+\left(M_{2}-C_{2}\right)^{2}-\left(M_{1}-B_{1}\right)^{2}-\left(M_{2}-B_{2}\right)^{2}=0$ (and a similar equation for the other diagonal) is forced by the assumptions of the problem. This is essentially an ideal membership question.
a) The following conditions of the problem are clear: $\overline{A B}\|\overline{C D}, \overline{A C}\| \overline{B D}$, A, M, D are collinear, B, M, C are collinear. Are any other conditions needed?
b) Now put all the conditions on the computer and prove the theorem computationally.

Pascal's Theorem says the following:
Theorem 2. Let C be an irreducible conic. Let $P_{1}, P_{2}, \ldots, P_{6}$ be 6 points on the conic. Let A be the intersection of $\overline{P_{1} P_{2}}$ and $\overline{P_{4} P_{5}}, B$ be the intersection of $\overline{P_{2} P_{3}}$ and $\overline{P_{5} P_{6}}$, and C be the intersection of $\overline{P_{3} P_{4}}$ and $\overline{P_{6} P_{1}}$. Then A, B, C are collinear.

Problem 3. Prove Pascal's theorem computationally.
Let $G \in k\left[x_{1}, x_{2}, \ldots, x_{n+1}\right]$ be a homogeneous polynomial. Let $V=V(G) \subseteq$ \mathbb{P}^{n}. The next problem is used to establish that the singularities of V are the zeroes of the ideal $\left(G_{x_{1}}, G_{x_{2}}, \ldots, G_{x_{n+1}}, G\right)$. In other words, you don't have to look at each affine piece individually, you can make a single calculation that includes all of the affine pieces.

Problem 4. Let $F \in k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ and $F^{h} \in k\left[x_{1}, x_{2}, \ldots, x_{n+1}\right]$. Let $P=$ $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in V(F) \subseteq \mathbb{A}^{n}$. Then $P^{h}=\left[a_{1}: a_{2}: \cdots: a_{n}: 1\right] \in V\left(F^{h}\right) \subseteq$ \mathbb{P}^{n}. Show that $F_{x_{1}}(P)=F_{x_{2}}(P)=\cdots=F_{x_{n}}(P)=0 \Longleftrightarrow\left(F^{h}\right)_{x_{1}}\left(P^{h}\right)=$ $\left(F^{h}\right)_{x_{2}}\left(P^{h}\right)=\cdots=\left(F^{h}\right)_{x_{n+1}}\left(P^{h}\right)=0$.

Let $F, G \in R=k[x, y, z]$ be two polynomials which do not share common factors. Let $P \in V(F, G)$. The intersection number of F and G at P is defined to be $I(P, F \cap G)=\operatorname{dim}_{k}\left(\mathcal{O}_{P}\left(\mathbb{A}^{2}\right) /(F, G)\right)$. If $P=(a, b)$ then let $I_{P}=(x-a, y-b)$. Intersection numbers can be determined computationally as $\lim _{n \rightarrow \infty} \operatorname{dim}_{k}\left(R /\left(I_{P}^{n}, F, G\right)\right)$. In a practical way, this can be determined by increasing n until $\operatorname{dim}_{k}\left(R /\left(I_{P}^{n}, F, G\right)\right)$ stabilizes.
Problem 5. Let $F=y^{2}-x^{3}-x^{2}$ and $G=\left(x^{2}+y^{2}\right)^{2}+3 x^{2} y-y^{3}$. Let $P=(0,0)$. Compute $I(P, F \cap G)$.

