Problem Set 15

Problem 1. Let H be a hexagon. The intersections of the opposite sides of H determine 3 points A, B, C. Prove that if A, B, C lie on a line then the vertices of the hexagon lie on a conic.

Problem 2. Let C be an irreducible curve of degree 2 in \mathbb{P}^{2}. Prove that the dual of C is a conic.

Problem 3. State the dual form of Pascal's theorem.

Problem 4. State the dual form of Pappus's theorem.

Problem 5. Give a brief explanation of why there is not a conic passing through 6 general points in \mathbb{P}^{2}.

Problem 6. Let $P_{1}, P_{2}, \ldots, P_{6}$ be 6 points on an irreducible curve, C, of degree 2 in \mathbb{P}^{2}. Let $L_{i j}$ denote the line passing through points P_{i} and P_{j}. Let $Q_{1}=L_{12} \cap$ $L_{34}, Q_{2}=L_{23} \cap L_{45}, Q_{3}=L_{34} \cap L_{56}, Q_{4}=L_{45} \cap L_{61}, Q_{5}=L_{56} \cap L_{12}, Q_{6}=L_{16} \cap L_{23}$. Prove that there is a conic passing through Q_{1}, \ldots, Q_{6}.

Problem 7. Let C and D be curves in \mathbb{P}^{2} of degree n. Suppose C and D meet in exactly n^{2} points. Suppose there is a curve of degree $m<n$ which contains mn of the n^{2} points. Use Bezout's thereom to prove that there is a curve F of degree $n-m$ which contains the remaining $n^{2}-n m$ points.

