Problem Set 15

Problem 1. Let H be a hexagon. The intersections of the opposite sides of H determine 3 points A, B, C. Prove that if A, B, C lie on a line then the vertices of the hexagon lie on a conic.

Problem 2. Let C be an irreducible curve of degree 2 in \mathbb{P}^2 . Prove that the dual of C is a conic.

Problem 3. State the dual form of Pascal's theorem.

Problem 4. State the dual form of Pappus's theorem.

Problem 5. Give a brief explanation of why there is not a conic passing through 6 general points in \mathbb{P}^2 .

Problem 6. Let P_1, P_2, \ldots, P_6 be 6 points on an irreducible curve, C, of degree 2 in \mathbb{P}^2 . Let L_{ij} denote the line passing through points P_i and P_j . Let $Q_1 = L_{12} \cap L_{34}, Q_2 = L_{23} \cap L_{45}, Q_3 = L_{34} \cap L_{56}, Q_4 = L_{45} \cap L_{61}, Q_5 = L_{56} \cap L_{12}, Q_6 = L_{16} \cap L_{23}$. Prove that there is a conic passing through Q_1, \ldots, Q_6 .

Problem 7. Let C and D be curves in \mathbb{P}^2 of degree n. Suppose C and D meet in exactly n^2 points. Suppose there is a curve of degree m < n which contains mn of the n^2 points. Use Bezout's thereom to prove that there is a curve F of degree n - m which contains the remaining $n^2 - nm$ points.