Problem Set 16

In an earlier problem set, it was shown that any three points in \mathbb{A}^{2} can be moved to any other set by an affine change of coordinates. The next problem is a similar problem in \mathbb{P}^{n}. Let $V \subseteq \mathbb{P}^{n}$ be a set of points. V is said to be in linearly general position if any subset of V of size $n+1$ does not lie on a hyperplane and if any subset of V of size $k \leq n$ does not lie on a $k-1$-plane.

Problem 1. Prove that any 2 ordered sets of $n+2$ points in linearly general position in \mathbb{P}^{n} are projectively equivalent.

Problem 2. Can you find a condition that allows you to determine when 4 points in \mathbb{P}^{1} are projectively equivalent? Hint: Let the two sets be $\left\{P_{1}, P_{2}, P_{3}, P_{4}\right\}$ and $\left\{Q_{1}, Q_{2}, Q_{3}, Q_{4}\right\}$. Move P_{1} to 1 , move P_{2} to ∞, and move P_{3} to 0 . Where does P_{4} get moved?

A modification of this procedure can be used to determine when $n+3$ ordered points in \mathbb{P}^{n} are linearly equivalent (see pages $7,8,12$ of Harris). An explicit answer is not known for determining when two ordered sets of more than $n+3$ points are linearly equivalent. Work on it!

Problem 3. Show that a line through 2 flexes on a cubic passes through a third flex.

The next three problems are from Fulton's book on algebraic curves.

Problem 4. Let C be the non singular cubic curve in \mathbb{P}^{2} determined by the equation $y^{2} x=x^{3}+a y^{2} z+b x z^{2}+c z^{3}$. Let $0=[0: 1: 0]$. Let $P_{i}=\left[x_{i}: y_{i}: 1\right]$ for $i=1,2,3$. Suppose $P_{1} \oplus P_{2}=P_{3}$. If $x_{1} \neq x_{2}$ then let $\lambda=\left(y_{1}-y_{2}\right) /\left(x_{1}-x_{2}\right)$. If $P_{1}=P_{2}$ and $y_{1} \neq 0$, let $\lambda=\left(3 x_{1}^{2}+2 a x_{1}+b\right) /\left(2 y_{1}\right)$. Let $\mu=y_{i}-\lambda x_{i}($ for $i=1$ or 2). Show that $x_{3}=\lambda^{2}-a-x_{1}-x_{2}$ and $y_{3}=\lambda x_{3}-\mu$.

Problem 5. Let $C=V\left(y^{2} z-x^{3}-4 x z^{2}\right), 0=[0: 1: 0], A=[0: 0: 1], B=[2:$ $4: 1], C=[2:-4: 1]$. Show that $0, A, B, C$ form a subgroup of order 4 and that it is cyclic.

Problem 6. Let $C=V\left(y^{2} z-x^{3}-43 x z^{2}-166 z^{3}\right), 0=[0: 1: 0], P=[3: 8: 1]$. Show that P is an element of order 7 in C.

