Problem Set 17

There was a typo on Problem 4 from Problem Set 16. It should read as:

Problem 1. Let C be the non singular cubic curve in \mathbb{P}^2 determined by the equation $y^2z = x^3 + ax^2z + bxz^2 + cz^3$. Let 0 = [0:1:0]. Let $P_i = [x_i:y_i:1]$ for i = 1, 2, 3. Suppose $P_1 \oplus P_2 = P_3$. If $x_1 \neq x_2$ then let $\lambda = (y_1 - y_2)/(x_1 - x_2)$. If $P_1 = P_2$ and $y_1 \neq 0$, let $\lambda = (3x_1^2 + 2ax_1 + b)/(2y_1)$. Let $\mu = y_i - \lambda x_i$ (for i = 1 or 2). Show that $x_3 = \lambda^2 - a - x_1 - x_2$ and $y_3 = -\lambda x_3 - \mu$.

Problem 5 (and problem 6 with a bit of work) of the previous problem set can be done without the aid of the problem above. It can even be done on the computer by using ideal quotients.

Problem 2. Let C be an irreducible cubic. Let L be a line such that $L \cdot C = P_1 + P_2 + P_3$ with the P_i distinct. Let L_i be the tangent line to C at P_i (So $L_i \cdot C = 2P_i + Q_i$ for some Q_i). Show that Q_1, Q_2, Q_3 lie on a line.

Problem 3. Let C be a nonsingular cubic. Let 0 be a flex point of C. Let $P_1, P_2, \ldots, P_{3m} \in C$. Show that $P_1 \oplus P_2 \oplus \cdots \oplus P_{3m} = 0$ if and only if there is a curve F of degree m such that $F \cdot C = \sigma_{i=1}^{3m} P_i$. See the bottom of the page if you want a hint. If you don't want a hint then you can probably figure out that you shouldn't look at the bottom of the page.

A set of points is said to be in d-general position if *every* subset of the points impose independent conditions on polynomials of degree d (or if there are no degree d polynomials passing through the subset of points). A set of points is said to be in general position if it is in d-general position for every d.

Problem 4. Show that the following set of points is not in 3-general position: [0:0:1], [0:1:1], [1:0:1], [1:1:1], [0:2:1], [2:0:1], [1:2:1], [2:1:1], [2:2:1].

Hint: Use induction. Let $L \cdot C = P_1 + P_2 + Q$, $L' \cdot C = P_3 + P_4 + R$, $L'' \cdot C = Q + R + S$. Apply induction to S, P_5, \ldots, P_{3m} .