Problem Set 18

Problem 1. a) Let R = k[x, y, z]. Show that every syzygy of the matrix $\begin{bmatrix} x & y \end{bmatrix}$ is of the form $A \begin{bmatrix} -y \\ x \end{bmatrix}$ where $A \in R$.

b) Show that every syzygy of $\begin{bmatrix} x & y & z \end{bmatrix}$ is an *R*-linear combination of the three syzygies $\begin{bmatrix} -y \\ x \\ 0 \end{bmatrix}$, $\begin{bmatrix} -z \\ 0 \\ x \end{bmatrix}$, $\begin{bmatrix} 0 \\ -z \\ y \end{bmatrix}$.

Problem 2. Let $R = k[x_1, x_2, ..., x_n]$. Show that every syzygy of $\begin{bmatrix} x_1 & x_2 & ... & x_n \end{bmatrix}$ is generated by an R-linear combination of the $\binom{n}{2}$ syzygies of the form

 $\begin{bmatrix} 0 & 0 & \dots & -x_i & \dots & x_j & 0 & \dots & 0 \end{bmatrix}^T$

where $-x_i$ is in the j^{th} spot and x_j is in the i^{th} spot and there are zeroes in every other spot.

Problem 3. Let Q_1, Q_2 be two general quadrics in R = k[w, x, y, z]. Let $I = (Q_1, Q_2)$. It can be shown that the minimal free resolution of R/I is

$$0 \to R(-4) \to R(-2)^2 \to R \to R/I \to 0$$

Use this free resolution to compute the Hilbert polynomial of R/I.

Problem 4. Let Q_1, Q_2, Q_3 be three general quadrics in R = k[w, x, y, z]. Let $I = (Q_1, Q_2, Q_3)$. It can be shown that the minimal free resolution of R/I is

$$0 \to R(-6) \to R(-4)^3 \to R(-2)^3 \to R \to R/I \to 0.$$

Use this free resolution to compute the Hilbert polynomial of R/I.

Problem 5. Let $F = x^3 + x^2y + z^3 \in k[x, y, z]$. Let S = k[X, Y, Z]. Let elements in S act on F by partial differentiation.

- a) Find $I_S(F)$.
- b) Determine the Hilbert function of $S/I_S(F)$.