Problem Set 18

Problem 1. a) Let $R=k[x, y, z]$. Show that every syzygy of the matrix $\left[\begin{array}{ll}x & y\end{array}\right]$ is of the form $A\left[\begin{array}{c}-y \\ x\end{array}\right]$ where $A \in R$.
b) Show that every syzygy of $\left[\begin{array}{lll}x & y & z\end{array}\right]$ is an R-linear combination of the three syzygies $\left[\begin{array}{c}-y \\ x \\ 0\end{array}\right],\left[\begin{array}{c}-z \\ 0 \\ x\end{array}\right],\left[\begin{array}{c}0 \\ -z \\ y\end{array}\right]$.

Problem 2. Let $R=k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. Show that every syzygy of $\left[\begin{array}{llll}x_{1} & x_{2} & \ldots & x_{n}\end{array}\right]$ is generated by an R-linear combination of the $\binom{n}{2}$ syzygies of the form

$$
\left[\begin{array}{lllllllll}
0 & 0 & \ldots & -x_{i} & \ldots & x_{j} & 0 & \ldots & 0
\end{array}\right]^{T}
$$

where $-x_{i}$ is in the $j^{\text {th }}$ spot and x_{j} is in the $i^{\text {th }}$ spot and there are zeroes in every other spot.

Problem 3. Let Q_{1}, Q_{2} be two general quadrics in $R=k[w, x, y, z]$. Let $I=$ $\left(Q_{1}, Q_{2}\right)$. It can be shown that the minimal free resolution of R / I is

$$
0 \rightarrow R(-4) \rightarrow R(-2)^{2} \rightarrow R \rightarrow R / I \rightarrow 0
$$

Use this free resolution to compute the Hilbert polynomial of R / I.

Problem 4. Let Q_{1}, Q_{2}, Q_{3} be three general quadrics in $R=k[w, x, y, z]$. Let $I=\left(Q_{1}, Q_{2}, Q_{3}\right)$. It can be shown that the minimal free resolution of R / I is

$$
0 \rightarrow R(-6) \rightarrow R(-4)^{3} \rightarrow R(-2)^{3} \rightarrow R \rightarrow R / I \rightarrow 0
$$

Use this free resolution to compute the Hilbert polynomial of R / I.

Problem 5. Let $F=x^{3}+x^{2} y+z^{3} \in k[x, y, z]$. Let $S=k[X, Y, Z]$. Let elements in S act on F by partial differentiation.
a) Find $I_{S}(F)$.
b) Determine the Hilbert function of $S / I_{S}(F)$.

