Problem Set 19

Problem 1. Let $G = Ax^2 + Bxy + Cxz + Dy^2 + Eyz + Fz^2 \in \mathbb{C}[x, y, z]$. You can quickly determine that

2A	B	C	$\begin{bmatrix} x \end{bmatrix}$		$\left[G_x\right]$	
B	2D	E	y	=	G_y	
C	E	2F	z		G_z	

Show that G is irreducible if and only if the 3×3 matrix that appears above has rank three.

Problem 2. Let R = k[x, y, z] and let S = k[X, Y, Z]. Let elements of S act on elements of R by partial differentiation. Let $J = (6YZ - 5Z^2, 6Y^2 - 4Z^2, 6XZ - 3Z^2, 6XY - 2Z^2, 6X^2 - Z^2) \subseteq S$. Find an $F \in R$ such that $J = I_S(F)$.

Let I be the ideal generated by the maximal minors of an $r \times (r+t)$ matrix. If V(I) has codimension t+1 then explicit resolutions have been determined for I. These varieties have been well studied and form the easiest case of *Determinantal* Varieties. You can find the free resolutions of such varieties in Eisenbud's book. A special case of such a matrix is the $r \times (r+k)$ matrix:

x_0	x_1		x_k	0	0	0	 0]
0	x_0	x_1		x_k	0	0	 0
0	0	x_0	x_1		x_k	0	 0
0	0	0		0	x_0	x_1	 x_k

If I is the ideal generated by the maximal minors of this matrix then $I = (x_0, x_1, \ldots, x_k)^r$ and the Hilbert function of R/I can be determined by many methods. The Hilbert function of R/I where I comes from a general $r \times (r+k)$ matrix of linear forms will be the same as this one.

Problem 3. Let M be an $r \times (r+1)$ matrix of linear forms in $R = k[x_0, x_1, \ldots, x_n]$. Let I be the ideal generated by the $r \times r$ minors of M. If V(I) has codimension 2 then we can determine explicitly a free resolution of I and use it to compute the Hilbert polynomial of R/I. Alternatively, we can compute the Hilbert polynomial using the comments above.

a) Let n = 2. Find the Hilbert polynomial of R/I as a function of r in 2 different ways and check that your answers are the same.

b) Repeat part a) with n = 3.