Problem Set 19

Problem 1. Let $G=A x^{2}+B x y+C x z+D y^{2}+E y z+F z^{2} \in \mathbb{C}[x, y, z]$. You can quickly determine that

$$
\left[\begin{array}{ccc}
2 A & B & C \\
B & 2 D & E \\
C & E & 2 F
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
G_{x} \\
G_{y} \\
G_{z}
\end{array}\right] .
$$

Show that G is irreducible if and only if the 3×3 matrix that appears above has rank three.

Problem 2. Let $R=k[x, y, z]$ and let $S=k[X, Y, Z]$. Let elements of S act on elements of R by partial differentiation. Let $J=\left(6 Y Z-5 Z^{2}, 6 Y^{2}-4 Z^{2}, 6 X Z-\right.$ $\left.3 Z^{2}, 6 X Y-2 Z^{2}, 6 X^{2}-Z^{2}\right) \subseteq S$. Find an $F \in R$ such that $J=I_{S}(F)$.

Let I be the ideal generated by the maximal minors of an $r \times(r+t)$ matrix. If $V(I)$ has codimension $t+1$ then explicit resolutions have been determined for I. These varieties have been well studied and form the easiest case of Determinantal Varieties. You can find the free resolutions of such varieties in Eisenbud's book. A special case of such a matrix is the $r \times(r+k)$ matrix:

$$
\left[\begin{array}{ccccccccc}
x_{0} & x_{1} & \ldots & x_{k} & 0 & 0 & 0 & \ldots & 0 \\
0 & x_{0} & x_{1} & \ldots & x_{k} & 0 & 0 & \ldots & 0 \\
0 & 0 & x_{0} & x_{1} & \ldots & x_{k} & 0 & \ldots & 0 \\
\ldots & \ldots \\
0 & 0 & 0 & \ldots & 0 & x_{0} & x_{1} & \ldots & x_{k}
\end{array}\right] .
$$

If I is the ideal generated by the maximal minors of this matrix then $I=$ $\left(x_{0}, x_{1}, \ldots, x_{k}\right)^{r}$ and the Hilbert function of R / I can be determined by many methods. The Hilbert function of R / I where I comes from a general $r \times(r+k)$ matrix of linear forms will be the same as this one.

Problem 3. Let M be an $r \times(r+1)$ matrix of linear forms in $R=k\left[x_{0}, x_{1}, \ldots, x_{n}\right]$. Let I be the ideal generated by the $r \times r$ minors of M. If $V(I)$ has codimension 2 then we can determine explicitly a free resolution of I and use it to compute the Hilbert polynomial of R / I. Alternatively, we can compute the Hilbert polynomial using the comments above.
a) Let $n=2$. Find the Hilbert polynomial of R / I as a function of r in 2 different ways and check that your answers are the same.
b) Repeat part a) with $n=3$.

