Problem Set 20

Problem 1. Let F and G be two homogeneous polynomials in $R=k\left[x_{0}, x_{1}, \ldots, x_{n}\right]$. Assume that F and G do not share any common factors. Suppose that $A, B \in R$ and $A F+B G=0$. Prove that there exists an $H \in R$ such that $A=-H G$ and $B=H F$. (In other words prove that every syzygy of $\left[\begin{array}{ll}F & G\end{array}\right]$ is of the form $\left.H\left[\begin{array}{c}-G \\ F\end{array}\right].\right)$

Suppose the Hilbert Polynomial of R / I is $F(X)=a_{r} X^{r}+a_{r-1} X^{r-1}+\cdots+$ $a_{1} X+a_{0}$. Associated to I is a scheme (not necessarily equidimensional). The dimension of the scheme is equal to r. The degree of the scheme is $a_{r} / r!$. If $F(X)=a_{1} X+a_{0}$ then the scheme is one dimensional and has degree a_{1}. Let $G=1-a_{0}$. If the scheme is one dimensional then G is called the arithmetic genus.

Problem 2. a) Use the previous problem to determine the Hilbert Polynomial of $k\left[x_{0}, x_{1}, x_{2}, x_{3}\right] /(F, G)$ where F is irreducible of degree 3 and G is irreducible of degree 5 .
b) When do the Hilbert Function and Hilbert Polynomial of $k\left[x_{0}, x_{1}, x_{2}, x_{3}\right] /(F, G)$ start to agree?
c) What is the arithmetic genus of the scheme defined by F and G. (If F and G meet transversally at their points of intersection then we can think of the variety defined by F and G instead of the scheme defined by F and G.)

Problem 3. Let M be a 4×4 matrix. Let $M_{\text {top }}$ denote the top two rows of M. Let $M_{\text {bottom }}$ denote the bottom two rows of M. It was claimed in class that the determinant of M could be written in terms of the 2×2 minors of $M_{\text {top }}$ and the 2×2 minors of $M_{\text {bottom }}$. Let $a_{i j}$ denote the $i j^{\text {th }}$ entry of M. If $M^{i j}=a_{1 i} a_{2 j}-a_{2 i} a_{1 j}$ and $M_{i j}=a_{3 i} a_{4 j}-a_{4 i} a_{3 j}$, then write the determinant of M in terms of these symbols and verify that it is correct.

Problem 4. Recall that the join of two varieties $V, W \subseteq \mathbb{P}^{n}$ is defined to be the closure of the set of all lines joining a point of V to a point of W. We will write this as $J(V, W)$. Let $R=k[a, b, c, d, e]$. Let L_{1} be the line defined by the ideal $(a-b, c+d, e) \subseteq R$ and let L_{2} be the line defined by the ideal $(a+c, b+d, a+b+e) \subseteq R$. Find generators for the ideal of $J\left(L_{1}, L_{2}\right)$.

Problem 5. Determine the equation of the secant variety to the Veronese Surface in \mathbb{P}^{5}.

