A sample solution of Problem 2 in Problem Set 19 with Macaulay2

Chris Peterson and Hirotachi Abo

Partial differentiations.

Let k be an algebraically closed field, and let R denote the polynomial ring $k[x, y, z]$. Assume that I is an ideal with $V(I)=\emptyset$. Then the quotient ring Q of R modulo I is a finite-dimensional vector space over k. In other words, Q is artinian. In this case, Q has a free resolution of the following type (this is not trivial):

$$
0 \rightarrow F_{3} \rightarrow F_{2} \rightarrow F_{1} \rightarrow R \rightarrow Q \rightarrow 0,
$$

where F_{i} are free modules for each $i=1,2$ and 3 . This ring is called arithmetically Gorenstein if F_{3} can be written as $R(-l)$ for some positive integer l (i.e. F_{3} has rank 1).

Remark 1. Let Q be an artinian arithmetically Gorenstein ring over R. Then there is a positive integer d such that $\operatorname{dim}_{k}\left(Q_{d}\right)=1$ and $\operatorname{dim}_{k}\left(Q_{i}\right)=0$ for all $i>d$.

Let S be the polynomial ring $k[X, Y, Z]$, and let S act on R by partial differentiation:

$$
X(x):=\partial_{x}(x), Y(y):=\partial_{y}(y) \text { and } Z(z):=\partial_{z}(z) .
$$

Let F be a single homogeneous polynomial of degree d in R. For this F, denote by $I_{S}(F)$ the set of polynomials G in S satisfying $G(F)=0$. Then $I_{S}(F)$ is an ideal of S (why?). Consider the quotient ring $Q(F)$ of S modulo $I_{S}(F)$. It is known that this ring is artinian and arithmetically Gorenstein.

Remark 2. By definition, $\operatorname{dim}_{k}(Q(F))_{i}=0$ for all $i>d$. It immediately follows that $Q(F)$ is artinian. Let G be a degree d homogeneous polynomial in $I_{S}(F)$:

$$
G=\sum_{i+j+k=d} a_{i j k} x^{i} y^{j} z^{k} .
$$

Then $G(F)$ can be written as a k-linear combination of $a_{i j k}$'s. So the elements G satisfying $G(F)=0$ form a one-codimensional subspace in S_{d}, and hence $\operatorname{dim}_{k}\left(Q(F)_{d}\right)=1$. In general, we have the following equations:

$$
\operatorname{dim}_{k}\left(Q(F)_{r}\right)=\operatorname{dim}_{k}\left(Q(F)_{d-r}\right) \text { for all } 0 \leq r<d / 2
$$

Proposition. If Q is an artinian arithmetically Gorenstein ring of S, then there is a polynomial F in R such that $Q=S / I_{S}(F)$. Furthermore, such a polynomial is uniquely determined up to constants.

Proof. See Inverse System of a Symbolic Power I in Journal of Algebra 174, 1080-1090, by J. Emsalem and A. Iarrobino.
Let us discuss how to compute the corresponding polynomial F in R from a given artinian arithmetically Gorenstein ring Q of S. From Remark 1, it follows that there is a positive integer d such that $\operatorname{dim}_{k}\left(Q_{d}\right)=1$ and $\operatorname{dim}_{k}\left(Q_{i}\right)=0$ for $i>d$. Let I be the ideal in S, that is obtained as the kernel of the ring homomorphism from S to Q, and let $\left\{f_{1}, \ldots, f_{t}\right\}$ be a set of generators of I_{d}, where

$$
t=\operatorname{dim}_{k}\left(S_{d}\right)-\operatorname{dim}_{k}\left(Q_{d}\right)=\binom{d+2}{2}-1 .
$$

Consider the bilinear map \tilde{T} from $I_{d} \otimes_{k} R_{d}$ to k defined by $\tilde{T}(G \otimes F)=G(F)$. Recall that this bilinear map corresponds to a linear transformation T from R_{d} to $\left(I_{d}\right)^{*}$. The nullspace of this linear transformation, that is equal to the set

$$
\mathfrak{F}=\left\{F \in R_{d} \mid G(F)=0 \text { for all } G \in I_{d}\right\},
$$

has dimension 1 . Let F be a nonzero polynomial in \mathfrak{F}. Such a polynomial can be computed explicitly by using the matrix representation of T with respect to the basis $\left\{f_{1}^{*}, \ldots, f_{t}^{*}\right\}$ for $\left(I_{d}\right)^{*}$ and the standard basis for R_{d}. Indeed, this matrix is given by $\left(\begin{array}{lll}f_{1} & \cdots & f_{t}\end{array}\right)^{T} \cdot\left(\begin{array}{lll}x_{0}^{d} & \cdots & x_{2}^{d}\end{array}\right)$. Here is an algorithm for finding F :

```
Input: ideal I with Q=S/I artinian, arithmetically Gorenstein
Output: a nonzero polynomial F with I_S(F)=I
i:=0
r:=dim(Q_0)
d:=0
Repeat
    r=dim(Q_i)
    d=i-1
Until r=0
B:=a basis of I_d
B':=the standard basis for R_d
A:=B^T*B'
syz:=a syzygy matrix of A
F:=B'*syz
```

In Macaulay2, we use the function diff to compute A in pseudocode. This function is used to differentiate polynomials. Basically, the first argument is the variable to differentiate with respect to, and the second one is the polynomial to be differentiated:

```
i1 : R=QQ[x,y]
o1 = R
o1 : PolynomialRing
i2 : F=x^2*y+y^7
    7 2
o2 = y + x y
o2 : R
i3 : diff(x,F)
o3 = 2x*y
o3 : R
```

The first argument can be also sum:
i4 : diff($\mathrm{x}+\mathrm{y}, \mathrm{F}$)
$6 \quad 2$
$04=7 y+x+2 x * y$

04 : R
The first and second arguments can be matrices:

```
i5 : diff(transpose matrix{{x,y}},matrix{{x^3+y,x*y+y^2}})
o5 = {1} | 3x2 y |
    {1} | 1 x+2y |
    2 2
o5 : Matrix R <--- R
```

This corresponds to the jacobian matrix of the ideal generated by the matrix in the second argument.

Here is the function for finding F :

```
i6 : idealOfCurveCorrToGorenstein=(idl)->(
    i:=0;
    isMaximum:=false;
    r:=ring idl;
    numbasis:=numgens source basis(0,r/idl);
    maxi:=0;
    while not isMaximum do (
    numbasis=numgens source basis(i+1,r/idl);
    maxi=i;
    if numbasis===0 then (
            isMaximum=true;
            g:=(gens idl)* map(source gens idl,basis(maxi,idl));
            m:=basis(maxi,r);
            mat:=diff(transpose g,m);
            sy:=syz mat;
            f:=basis(maxi,r)*sy;
            );
    i=i+1;
    );
    ideal f)
o6 = idealOfCurveCorrToGorenstein
o6 : Function
```

Problem 2 (Set 19). Let $J=\left(6 x z-5 z^{2}, 6 y^{2}-4 z^{2}, 6 x z-3 z^{2}, 6 x y-2 z^{2}, 6 x^{2}-\right.$ $\left.z^{2}\right)$. Then the quotient ring Q of S modulo J is artinian and arithmetically Gorenstein. To check this, compute the free resolution of Q :
i7 : KK=QQ;
i8 : ringP2=KK[x,y,z];
$i 9: ~ J=i d e a l\left(6 * y * z-5 * z^{\wedge} 2,6 * y^{\wedge} 2-4 * z^{\wedge} 2,6 * x * z-3 * z^{\wedge} 2,6 * x * y-2 * z^{\wedge} 2,6 * x^{\wedge} 2-z^{\wedge} 2\right)$;
o9 : Ideal of ringP2
i10 : fJ=res J;
i11 : betti fJ

```
o11 = total: 1 5 5 1
    0: 1 . . .
    1: . 5 5 .
    2: . . . 1
```

The free resolution of Q is of length 4 , and its last spot has rank 1 . So Q is an artinian and arithmetically Gorenstein ring. By using the function idealOfCurveCorrToGorenstein, we can compute the degree 2 polynomial F in R such that $J=I_{S}(F)$:
i12 : F=idealOfCurveCorrToGorenstein(J)

o12 : Ideal of ringP2

