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Partial differentiations.

Let k£ be an algebraically closed field, and let R denote the polynomial ring
k[z,y, z]. Assume that I is an ideal with V(I) = (). Then the quotient ring
@ of R modulo [ is a finite-dimensional vector space over k. In other words,
@ is artinian. In this case, ) has a free resolution of the following type (this
is not trivial):

0—-F;—F,—>F,—R—Q—0,

where F; are free modules for each i = 1,2 and 3. This ring is called arith-

metically Gorenstein if F3 can be written as R(—[) for some positive integer
[ (i.e. F3 hasrank 1).

Remark 1. Let ) be an artinian arithmetically Gorenstein ring over R. Then
there is a positive integer d such that dimg(Q4) = 1 and dim(Q;) = 0 for all
i>d.

Let S be the polynomial ring k[X,Y, Z], and let S act on R by partial
differentiation:

X(z) :==0,(x),Y (y) == 0y(y) and Z(z) := 0,(z).

Let F' be a single homogeneous polynomial of degree d in R. For this F,
denote by Is(F) the set of polynomials G in S satisfying G(F') = 0. Then
I(F) is an ideal of S (why?). Consider the quotient ring Q(F) of S modulo
Is(F). It is known that this ring is artinian and arithmetically Gorenstein.

Remark 2. By definition, dimy(Q(F)); = 0 for all i« > d. It immediately
follows that Q(F') is artinian. Let G be a degree d homogeneous polynomial

in Is(F):
G = Z aijkxiyjzk.
i+j+k=d
Then G(F') can be written as a k-linear combination of a;j;’s. So the elements
G satisfying G(F') = 0 form a one-codimensional subspace in Sy, and hence
dim(Q(F)4) = 1. In general, we have the following equations:

dimg (Q(F),) = dimg(Q(F)a—,) for all 0 < r < d/2.



Proposition. If () is an artinian arithmetically Gorenstein ring of S, then
there is a polynomial F' in R such that @ = S/Is(F). Furthermore, such a
polynomial is uniquely determined up to constants.

Proof. See Inverse System of a Symbolic Power I in Journal of Algebra 174,
1080-1090, by J. Emsalem and A. Iarrobino. O

Let us discuss how to compute the corresponding polynomial F' in R from
a given artinian arithmetically Gorenstein ring () of S. From Remark 1,
it follows that there is a positive integer d such that dimg(Q;) = 1 and
dimy(Q;) = 0 for ¢ > d. Let I be the ideal in S, that is obtained as the
kernel of the ring homomorphism from S to @, and let {f1,..., f;} be a set
of generators of I;, where

d+2
Consider the bilinear map T from I;®, Ry to k defined by T(G® F) = G(F).
Recall that this bilinear map corresponds to a linear transformation 7" from
R, to (I3)*. The nullspace of this linear transformation, that is equal to the

set
S={FeR;| G(F)=0forall G e I},

has dimension 1. Let F' be a nonzero polynomial in §. Such a polynomial can
be computed explicitly by using the matrix representation of T" with respect
to the basis {f}, ..., f;'} for (I;)* and the standard basis for R,. Indeed, this
matrix is given by ( fi - fi )T . ( xd oo axd ) Here is an algorithm
for finding F:

Input: ideal I with Q=S/I artinian, arithmetically Gorenstein
Output: a nonzero polynomial F with I_S(F)=I

1:=0

r:=dim(Q_0)

d:=0

Repeat
r=dim(Q_1i)
d=i-1

Until r=0

B:=a basis of I_d
’:=the standard basis for R_d

A:=B"TxB’
syz:=a syzygy matrix of A
F:=B’*syz



In Macaulay?2, we use the function diff to compute A in pseudocode. This
function is used to differentiate polynomials. Basically, the first argument
is the variable to differentiate with respect to, and the second one is the
polynomial to be differentiated:

i1 : R=QQ[x,y]

ol = R

ol : PolynomialRing
12 @ F=x"2*xy+y~7

7 2
02 =y + x5y

o2 : R
i3 : diff(x,F)

03

2x*xy

o3 : R
The first argument can be also sum:

i4 : diff(x+y,F)

6 2
od =Ty + x + 2xxy

o4 : R
The first and second arguments can be matrices:

i6 : diff (transpose matrix{{x,y}},matrix{{x"3+y,x*y+y~2}1})

o6 = {1} | 3x2 y |
{1¥ I 1 x+2y |

2 2
o5 : Matrix R <-—-- R

This corresponds to the jacobian matrix of the ideal generated by the matrix
in the second argument.



Here is the function for finding F"

i6 : idealOfCurveCorrToGorenstein=(idl)->(
i:=0;
isMaximum:=false;
r:=ring idl;
numbasis:=numgens source basis(0,r/idl);
maxi:=0;
while not isMaximum do (
numbasis=numgens source basis(i+l,r/idl);
maxi=i;
if numbasis===0 then (
isMaximum=true;
g:=(gens idl)* map(source gens idl,basis(maxi,idl));
m:=basis(maxi,r);
mat:=diff (transpose g,m);
Sy:=syz mat;
f:=basis(maxi,r)*sy;
);
i=i+1;
);
ideal f)

06 = ideal0fCurveCorrToGorenstein

o6 : Function

Problem 2 (Set 19). Let J = (6xz — 522, 6y? — 422, 622 — 322, 6xy — 222, 622 —
2?). Then the quotient ring @ of S modulo J is artinian and arithmetically
Gorenstein. To check this, compute the free resolution of @:

i7 : KK=QQ;

i8 : ringP2=KK[x,y,z];

i9 : J=ideal (6*y*z-5%z"2,6%y " 2-4xz"2 6*x*z-3%2"2,6*%x*xy-2%z2"2,6%x"2-2"2) ;
09 : Ideal of ringP2

110 : fJ=res J;

i1l : betti £fJ



oll = total: 1 565651
0: 1 . ..
1: . 55 .
2: . . .1

The free resolution of @ is of length 4, and its last spot has rank 1. So
() is an artinian and arithmetically Gorenstein ring. By using the function

idealOfCurveCorrToGorenstein, we can compute the degree 2 polynomial
F in R such that J = Ig(F):

i12 : F=idealOfCurveCorrToGorenstein(J)
1 2 2 2 2 5 2
012 = ideal(—*x + —*x*y + —*y + X*z + —*y*z + z )

6 3 3 3

012 : Ideal of ringP2



