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Partial differentiations.
Let k be an algebraically closed field, and let R denote the polynomial ring
k[x, y, z]. Assume that I is an ideal with V (I) = ∅. Then the quotient ring
Q of R modulo I is a finite-dimensional vector space over k. In other words,
Q is artinian. In this case, Q has a free resolution of the following type (this
is not trivial):

0 → F3 → F2 → F1 → R → Q → 0,

where Fi are free modules for each i = 1, 2 and 3. This ring is called arith-
metically Gorenstein if F3 can be written as R(−l) for some positive integer
l (i.e. F3 has rank 1).

Remark 1. Let Q be an artinian arithmetically Gorenstein ring over R. Then
there is a positive integer d such that dimk(Qd) = 1 and dimk(Qi) = 0 for all
i > d.

Let S be the polynomial ring k[X, Y, Z], and let S act on R by partial
differentiation:

X(x) := ∂x(x), Y (y) := ∂y(y) and Z(z) := ∂z(z).

Let F be a single homogeneous polynomial of degree d in R. For this F ,
denote by IS(F ) the set of polynomials G in S satisfying G(F ) = 0. Then
IS(F ) is an ideal of S (why?). Consider the quotient ring Q(F ) of S modulo
IS(F ). It is known that this ring is artinian and arithmetically Gorenstein.

Remark 2. By definition, dimk(Q(F ))i = 0 for all i > d. It immediately
follows that Q(F ) is artinian. Let G be a degree d homogeneous polynomial
in IS(F ):

G =
∑

i+j+k=d

aijkx
iyjzk.

Then G(F ) can be written as a k-linear combination of aijk’s. So the elements
G satisfying G(F ) = 0 form a one-codimensional subspace in Sd, and hence
dimk(Q(F )d) = 1. In general, we have the following equations:

dimk(Q(F )r) = dimk(Q(F )d−r) for all 0 ≤ r < d/2.
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Proposition. If Q is an artinian arithmetically Gorenstein ring of S, then
there is a polynomial F in R such that Q = S/IS(F ). Furthermore, such a
polynomial is uniquely determined up to constants.

Proof. See Inverse System of a Symbolic Power I in Journal of Algebra 174,
1080-1090, by J. Emsalem and A. Iarrobino. 2

Let us discuss how to compute the corresponding polynomial F in R from
a given artinian arithmetically Gorenstein ring Q of S. From Remark 1,
it follows that there is a positive integer d such that dimk(Qd) = 1 and
dimk(Qi) = 0 for i > d. Let I be the ideal in S, that is obtained as the
kernel of the ring homomorphism from S to Q, and let {f1, . . . , ft} be a set
of generators of Id, where

t = dimk(Sd)− dimk(Qd) =

(
d + 2

2

)
− 1.

Consider the bilinear map T̃ from Id⊗k Rd to k defined by T̃ (G⊗F ) = G(F ).
Recall that this bilinear map corresponds to a linear transformation T from
Rd to (Id)

∗. The nullspace of this linear transformation, that is equal to the
set

F = {F ∈ Rd | G(F ) = 0 for all G ∈ Id},

has dimension 1. Let F be a nonzero polynomial in F. Such a polynomial can
be computed explicitly by using the matrix representation of T with respect
to the basis {f ∗1 , . . . , f ∗t } for (Id)

∗ and the standard basis for Rd. Indeed, this

matrix is given by
(

f1 · · · ft

)T ·
(

xd
0 · · · xd

2

)
. Here is an algorithm

for finding F :

Input: ideal I with Q=S/I artinian, arithmetically Gorenstein

Output: a nonzero polynomial F with I_S(F)=I

i:=0

r:=dim(Q_0)

d:=0

Repeat

r=dim(Q_i)

d=i-1

Until r=0

B:=a basis of I_d

B’:=the standard basis for R_d

A:=B^T*B’

syz:=a syzygy matrix of A

F:=B’*syz
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In Macaulay2, we use the function diff to compute A in pseudocode. This
function is used to differentiate polynomials. Basically, the first argument
is the variable to differentiate with respect to, and the second one is the
polynomial to be differentiated:

i1 : R=QQ[x,y]

o1 = R

o1 : PolynomialRing

i2 : F=x^2*y+y^7

7 2

o2 = y + x y

o2 : R

i3 : diff(x,F)

o3 = 2x*y

o3 : R

The first argument can be also sum:

i4 : diff(x+y,F)

6 2

o4 = 7y + x + 2x*y

o4 : R

The first and second arguments can be matrices:

i5 : diff(transpose matrix{{x,y}},matrix{{x^3+y,x*y+y^2}})

o5 = {1} | 3x2 y |

{1} | 1 x+2y |

2 2

o5 : Matrix R <--- R

This corresponds to the jacobian matrix of the ideal generated by the matrix
in the second argument.
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Here is the function for finding F :

i6 : idealOfCurveCorrToGorenstein=(idl)->(

i:=0;

isMaximum:=false;

r:=ring idl;

numbasis:=numgens source basis(0,r/idl);

maxi:=0;

while not isMaximum do (

numbasis=numgens source basis(i+1,r/idl);

maxi=i;

if numbasis===0 then (

isMaximum=true;

g:=(gens idl)* map(source gens idl,basis(maxi,idl));

m:=basis(maxi,r);

mat:=diff(transpose g,m);

sy:=syz mat;

f:=basis(maxi,r)*sy;

);

i=i+1;

);

ideal f)

o6 = idealOfCurveCorrToGorenstein

o6 : Function

Problem 2 (Set 19). Let J = (6xz−5z2, 6y2−4z2, 6xz−3z2, 6xy−2z2, 6x2−
z2). Then the quotient ring Q of S modulo J is artinian and arithmetically
Gorenstein. To check this, compute the free resolution of Q:

i7 : KK=QQ;

i8 : ringP2=KK[x,y,z];

i9 : J=ideal(6*y*z-5*z^2,6*y^2-4*z^2,6*x*z-3*z^2,6*x*y-2*z^2,6*x^2-z^2);

o9 : Ideal of ringP2

i10 : fJ=res J;

i11 : betti fJ
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o11 = total: 1 5 5 1

0: 1 . . .

1: . 5 5 .

2: . . . 1

The free resolution of Q is of length 4, and its last spot has rank 1. So
Q is an artinian and arithmetically Gorenstein ring. By using the function
idealOfCurveCorrToGorenstein, we can compute the degree 2 polynomial
F in R such that J = IS(F ):

i12 : F=idealOfCurveCorrToGorenstein(J)

1 2 2 2 2 5 2

o12 = ideal(-*x + -*x*y + -*y + x*z + -*y*z + z )

6 3 3 3

o12 : Ideal of ringP2
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