Chow forms

Chris Peterson and Hirotachi Abo

Note. This script is also available at:
http://www.math.colostate.edu/~abo/Research/smi/smi-algebraic-geometry.html

1. Chow form of a line in \mathbb{P}^{3}

Let k be an algebraically closed field, let \mathbb{P}^{3} be the three-dimensional projective space over k. We denote by S the homogeneous coordinate ring $k\left[x_{0}, x_{1}, x_{2}, x_{3}\right]$ of \mathbb{P}^{3}. Fix a line L in \mathbb{P}^{3}. The general line in \mathbb{P}^{3} does not intersect L. So the lines in \mathbb{P}^{3} hitting L form a proper subset $C(L)$ (actually a subvariety) of the grassmaniann of lines in \mathbb{P}^{3}. A question is: "How can we describe this subset?" Assume that the ideal $I(L)$ of L is generated by the following two linear forms: $\sum_{i=0}^{3} a_{0 i} x_{i}$ and $\sum_{i=0}^{3} a_{1 i} x_{i}$. Let L^{\prime} be a line in \mathbb{P}^{3} defined by linear forms $\sum_{i=0}^{3} b_{0 i} x_{i}$ and $\sum_{i=0} b_{1 i} x_{i}$. Then L and L^{\prime} intersect if and only if the determinant of the matrix

$$
\Lambda=\left(\begin{array}{cccc}
a_{00} & a_{01} & a_{02} & a_{03} \\
a_{10} & a_{11} & a_{12} & a_{13} \\
b_{00} & b_{01} & b_{02} & b_{03} \\
b_{10} & b_{11} & b_{12} & b_{13}
\end{array}\right)
$$

is zero. For $0 \leq i<j \leq 3$, let

$$
\lambda_{i j}=a_{i j} a_{i+1 j+1}-a_{i+1 j} a_{i j+1} \text { and } \Lambda_{i j}=b_{i j} b_{i+1 j+1}-b_{i+1 j} b_{i j+1} .
$$

From Problem 3 in Problem Set 20, it follows that $\operatorname{det}(\Lambda)=0$ if and only if

$$
F=\lambda_{01} \Lambda_{23}-\lambda_{02} \Lambda_{13}+\lambda_{03} \Lambda_{12}+\lambda_{12} \Lambda_{03}-\lambda_{13} \Lambda_{02}+\lambda_{23} \Lambda_{01}=0
$$

Recall that the Plücker embedding from $\mathbb{G}(1,3)$ to \mathbb{P}^{5} is defined by

$$
L^{\prime} \mapsto\left[\Lambda_{01}: \Lambda_{02}: \Lambda_{12}: \Lambda_{03}: \Lambda_{13}: \Lambda_{23}\right]=\left[X_{0}: \cdots: X_{5}\right] .
$$

Consider the ring $k\left[b_{00}, \ldots, b_{13}, X_{0}, \ldots, X_{5}\right]$ and the ideal

$$
I=\left(X_{0}-\Lambda_{01}, X_{1}-\Lambda_{02}, X_{2}-\Lambda_{12}, X_{3}-\Lambda_{03}, X_{4}-\Lambda_{13}, X_{5}-\Lambda_{23}, F\right)
$$

Let $J=I \cap k\left[X_{0}, \ldots, X_{5}\right]$. Then $J=\left(Q, F^{\prime}\right)$, where

$$
\begin{equation*}
Q=X_{0} X_{5}-X_{1} X_{4}+X_{2} X_{3} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
F^{\prime}=\lambda_{01} X_{5}-\lambda_{02} X_{4}+\lambda_{12} X_{3}+\lambda_{03} X_{2}-\lambda_{13} X_{1}+\lambda_{23} X_{0} \tag{2}
\end{equation*}
$$

Recall that Q is the defining equation of $\mathbb{G}(1,3)$. So $C(L)$ can be regarded as a hypersurface in $\mathbb{G}(1,3)$. This hypersurface is called the Chow variety of L, and the linear form F^{\prime} is called the Chow form of L. For a line L in \mathbb{P}^{3} chosen at random, we compute the Chow form with Macaulay2:
i1 : KK=QQ;
i2 : ringP3=KK[x_0..x_3];
i3 : L=ideal random(ringP3^\{0\},ringP3^\{2:-1\})

o3 : Ideal of ringP3
i4 : coeff=transpose diff(transpose (vars ringP3),gens L)

| $\circ 4=$ | $\{-1\}$ | \mid | 0 | $5 / 2$ | 1 | 0 |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- |$|$

०4 : Matrix ringP3 ${ }^{2}$ <--- ringP3 ${ }^{4}$
Using (2), we can compute the chow form of L :

$$
F^{\prime}=-\frac{19}{15} x_{3}-\frac{8}{9} x_{4}+\frac{20}{9} x_{5} .
$$

Let's check this!

```
i5 : ringP7=KK[b_(0,0)..b_(1,3)];
i6 : mat=matrix{{b_(0,0)..b_(0,3)},{b_(1,0)..b_( (1,3)}}
o6 = | b b_ (0,0) b_ (0,1) b_(0,2) b b (0,3) |
```

```
        2
    06 : Matrix ringP7 <--- ringP7
    i7 : pluecker=minors(2,mat)
    o7 = ideal (- b b + b b , - b b + b b , - b b + b b
                        0,1 1,0 0,0 1,1 0,2 1,0 0,0 1,2 0,2 1,1 0,1 1,2
o7 : Ideal of ringP7
    i8 : gamma=substitute(coeff,ringP7)||mat
    08={-1} | 0 5/2 1 0
```



```
    {0} | b_(0,0) b_ (0,1) b_ (0,2) b_(0,3) |
    {0} | b_(1,0) b_(1,1) b_(1,2) b_(1,3) |
        4
                            4
o8 : Matrix ringP7 <--- ringP7
i9 : F=det gamma
```



```
o9 : ringP7
i10 : ringP5=KK[X_0..X_5];
i11 : ringP7xP5=KK[b_(0,0)..b_(1,3),X_0..X_5,Degrees=>{8:1,6:2},
    MonomialOrder=>Eliminate 8];
i12 : grass=substitute(vars ringP5,ringP7xP5)-
                        substitute(gens pluecker,ringP7xP5);
                            1
                                    6
o12 : Matrix ringP7xP5 <--- ringP7xP5
i13 : hyper=substitute(F,ringP7xP5)
```


013 : ringP7xP5
i14 : gr=ideal grass+ideal hyper;
014 : Ideal of ringP7xP5
i15 : chowVariety=ideal substitute(selectInSubring(1,gens gb gr),ringP5)

o15 : Ideal of ringP5

The qudratic polynomial Q in chowVariety looks a little different from (1).
But this polynomial was just reduced. Indeed,

$$
\begin{aligned}
Q & =X_{1} X_{4}+\frac{40}{57} X_{2} X_{4}-X_{0} X_{5}-\frac{100}{57} X_{2} X_{5} \\
& =X_{1} X_{4}-X_{0} X_{5}-X_{2}\left(-\frac{40}{57} X_{4}+\frac{100}{57} X_{5}\right) \\
& =X_{1} X_{4}-X_{0} X_{5}-X_{2} X_{3}
\end{aligned}
$$

So Q differs from (1) by the sign.
i16 : chowForm=(gens chowVariety)_(0,0)

	40	100
$016=\mathrm{X}$	--*X	---*X
3	574	57

016 : ringP5
The linear form we have obtained is equal to $-\frac{15}{19} F^{\prime}$.
2. Number of 4-secant lines to four skew lines in \mathbb{P}^{3}

We start with the following question:

Question 1. Let L_{1}, L_{2}, L_{3} and L_{4} be four skew lines in \mathbb{P}^{3}. Is there a line which intersects all of them? If such a line exists, are there finitely many such lines or infinite many?
Suppose that there exists such a line L. Then L can be regarded as a point in $\mathbb{G}(1,3)$. Since L hits L_{1}, L_{2}, L_{3} and L_{4}, the corresponding point in $\mathbb{G}(1,3)$ is contained in $C\left(L_{1}\right) \cap C\left(L_{2}\right) \cap C\left(L_{3}\right) \cap C\left(L_{4}\right)$. Let F_{i} denote the Chow form of $L_{i}, i=1,2,3,4$. Then the intersection of the Chow varieties is defined by the ideal $I=\left(Q, F_{1}, F_{2}, F_{3}, F_{4}\right)$, where Q is the defining equation of $\mathbb{G}(1,3)$ in \mathbb{P}^{5}. Since the ideal is generated by five polynomials, the corresponding variety $V(I)$ cannot be empty. From the generality of the choice of the four skew lines, we can expect that $\left\{Q, F_{1}, F_{2}, F_{3}, F_{4}\right\}$ is a minimal generating set for I. In this case, $\operatorname{dim}(V(I))=0$, that is, $V(I)$ is a finite set of points. The next question is therefore:

Question 2. How many points are there in $V(I)$?
Recall that the "degree" of a given hypersurface in \mathbb{P}^{n} is defined to be the intersection number of the hypersurface itself and the general line in \mathbb{P}^{n}. On the other hand, the degree of an r-dimensional projective variety in \mathbb{P}^{n} is defined to be r ! times the leading coefficient of its Hilbert polynomial (see Chapter I-7 in Algebraic Geometry by R. Hartshorne). The Hilbert polynomial P_{V} of a hypersurface V in \mathbb{P}^{n} can be easily computed. Let R be the homogeneous coordinate ring of \mathbb{P}^{n}. If the polynomial defining V has degree d, then P_{V} is obtained from the exact sequence:

$$
0 \rightarrow R(-d) \rightarrow R \rightarrow \Gamma(V) \rightarrow 0 .
$$

Indeed, we obtain

$$
P_{V}(t)=\binom{n+t}{n}-\binom{n+t-d}{n}=\frac{d}{(n-1)!} t^{n-1}+\cdots .
$$

So $\operatorname{deg}(V)=d$. This implies that $\operatorname{deg}(\mathbb{G}(1,3))=2$, because $\operatorname{deg}(Q)=2$. The Chow forms F_{1}, F_{2}, F_{3} and F_{4} define a line in \mathbb{P}^{5}, and this line meets $V(Q)$ exactly in two points, because otherwise the line would lie on $V(Q)$ and there are infinitely many lines which intersect all four lines. But this contradicts our assumption. Therefore the number of points in $V(I)$ is expected to be 2 .

Exercise (Problem 1 in Problem Set 21). Given four skew lines in \mathbb{P}^{3}, show that the number of lines which intersect all of them is equal to 2 .
Hint. Use either Formula (2) or the Macaulay2 script to get the Chow forms of the four lines.

