Sample solutions for Problems 7, 8 and 10 in Problem Set 12 with Macaulay2

Chris Peterson and Hirotachi Abo

Problem 7, 8 and 10 (Set 12). Let C be an irreducible plane curve in \mathbb{P}^2 over an algebraically closed field k, that is, the zero locus of an irreducible polynomial $F \in k[x, y, z]$. Recall that the tangent line $T_p(C)$ to C at a point $p \in C$ is defined by the following single polynomial equation:

$$xF_x(p) + yF_y(p) + zF_z(p) = 0.$$

This allows us to define the map φ from C to the dual projective space $(\mathbb{P}^2)^*$ by

$$\varphi(p)$$
 = the dual of $T_p(C) = [F_x(p) : F_y(p) : F_z(p)].$

Let C^* be the projective closure of $\varphi(C)$ in $(\mathbb{P}^2)^*$. This C^* is called the *dual curve* of C.

Question. How can we compute the homogeneous polynomial whose zero locus is the dual curve C^* ?

Answer. Let $I = (X - F_x, Y - F_y, Z - F_z) + (F)$ be an ideal in K[x, y, z, X, Y, Z]. The generators of this ideal are not homogeneous, unless $\deg(F) = 2$. So we need to introduce weights on the variables x, y, z, X, Y, Z. Suppose that $\deg(F) = d$. Then we say that the variables x, y and z have weight 1 and X, Y and Z have weight d - 1. Compute a gröbner G basis for I in terms of the lexicographic order. The intersection of G and the ring k[X, Y, Z] is a basis of $I' = I \cap k[X, Y, Z]$. Note that I' has a weighted homogeneous basis. Since the variables X, Y and Z have the same degree, I' is homogeneous in the usual sense. This I' is the defining ideal of the dual curve C^* .

Since we proceed the same operation to solve the problems 7 (b), 8 (b) and 10 in Problem Set 12, we make a function to compute the dual curve for a given plane curve. The name of this function is idealOfDualCurve. This function takes as an input the ideal of a given plane curve and returns the ideal of its dual curve. Here is the code of the function idealOfDualCurve:

```
i1 : KK=QQ;
```

```
p2' := KK[X,Y,Z];
          -- p2' is the projective space of the dual space.
          -- Define the ring k[x,y,z,X,Y,Z]
          -- and specify the degrees of the generators
          -- of this ring with Degrees.
          p2xp2:=KK[x,y,z,X,Y,Z,Degrees=>{3:1,3:deg},
          MonomialOrder=>Lex];
          -- Define the ideal I.
          gr:=ideal(substitute(vars p2',p2xp2)
          -gens substitute(jj,p2xp2))+substitute(idl,p2xp2);
          -- Eliminate the first three variables.
          sgr:=ideal selectInSubring(3,gens gb gr);
          -- Substitute sgr into p2'
          didl:=substitute(sgr,p2')
o2 = idealOfDualCurve
o2 : Function
Define the homogeneous coordinate ring ringP2 of \mathbb{P}^2:
i3 : ringP2=KK[x,y,z]
o3 = ringP2
o3 : PolynomialRing
Define the ideals I = (x^2 + 3xy + y^2) and J = (x^3 + 3xyz + y^2z + z^3):
i4 : I=ideal(x^2+3*x*z+y^2)
            2
o4 = ideal(x + y + 3x*z)
o4 : Ideal of ringP2
i5 : J=ideal(x^3+3*x*y*z+y^2*z+z^3)
            3
                          2
                                 3
o5 = ideal(x + 3x*y*z + y z + z)
```

deg:=(degree jj_0)#0;

o5 : Ideal of ringP2

Compute the homogeneous ideal of the dual curve C^* of V(I):

i6 : I'=idealOfDualCurve(I)

o6 : Ideal of QQ [X, Y, Z]

The generator of I' is a quadratic polynomial, as we expected (see Problem 2 in Problem Set 15). Is this curve singular (Problem 7 (c))? To check this, we need the following criterion: Let K be the ideal generated by the entries of the jacobian matrix of I'. Then C^* is singular if and only if $V(K+I')=\emptyset$. The latter condition is equivalent to the condition that there is a positive integer N such that $(X,Y,Z)^N\subseteq K+I'$ (weak Nullstellensatz). This can be checked as follows: Compute the radical of K+I' and see whether $\operatorname{rad}(K+I')$ contains the ideal (X,Y,Z). If $\operatorname{rad}(K+I')$ contains (X,Y,Z), then $(X,Y,Z)^N\subseteq K+I'$ for some N (why?):

i7 : singI'=ideal(jacobian I')+I'

o7 : Ideal of QQ [X, Y, Z]

i8 : radical singI'

o8 = ideal(Z, Y, X)

o8 : Ideal of QQ [X, Y, Z]

In this case, the radical of K + I' is the ideal (X, Y, Z). So we can conclude that C^* is nonsingular.

Next we compute the ideal of the dual curve D^* of V(J):

i9 : J'=idealOfDualCurve(J)

o9 : Ideal of QQ [X, Y, Z]

Let us recall the following fact:

Proposition. A nonsingular plane cubic curve has nine flex points.

The curve D is a nonsingular cubic curve (we can check this by using the same method as in Problem 7 (c)). The above proposition implies that D has nine flex points. These points correspond to singular points of D^* . There are no bitangent lines to D, because any tangent line to D meets D in $3 = 3 \cdot 1$ points (Bezout's theorem). So the singular locus of D^* is expected to have degree 9(=the number of flex points). Compute the ideal of the singular locus by using the jacobian matrix of J:

i10 : singJ'=ideal(jacobian J')+J'

o10 : Ideal of QQ [X, Y, Z]

Take the radical of the ideal and compute the degree of this radical with degree:

ill : radSingJ'=radical singJ'

o11 : Ideal of QQ [X, Y, Z]

i12 : degree radSingJ'

012 = 9

Let C be a plane curve. A natural question for us is, "what is the dual curve C^{**} of C^{**} ? Is C^{**} maybe the original curve C (Problem 10)? Let C be the smooth conic given in Problem 7. We check $C^{**} = C$. First of all, we have to change the variables of the ring of C^{*} :

i13 : ringP2xP2=KK[x,y,z,X,Y,Z]

o13 = ringP2xP2

o13 : PolynomialRing

i14 : K=substitute(substitute(I',ringP2xP2),{X=>x,Y=>y,Z=>z})

o14 : Ideal of ringP2xP2

i15 : K'=substitute(K,ringP2)

o15 : Ideal of ringP2

Compute the dual curve with idealOfDualCurve:

i16 : idealOfDualCurve(K')

o16 : Ideal of QQ [X, Y, Z]

The ideal of C^{**} equals the ideal of the original curve C.