Sample solutions for Problem 5 in Problem Set 13 with Macaulay2

Chris Peterson and Hirotachi Abo

Problem 5 (Set 13). Let k be an algebraically closed field, let $F=y^{2}-x^{3}-x^{2}$ and $G=\left(x^{2}+y^{2}\right)^{2}+3 x^{2} y-y^{3}$ be polynomials in $R:=k[x, y]$, and let C_{1} and C_{2} denote the curves $V(F)$ and $V(G)$ in \mathbb{A}^{2} respectively. Then the point $P=(0,0)$ is contained in both C_{1} and C_{2}. We compute the intersection number of $I(P, F \cap G)$. Recall that $I(P, F \cap G)$ is defined to be the following vector space

$$
\operatorname{dim}_{k}\left(\mathcal{O}_{P}\left(\mathbb{A}^{2}\right) /(F, G) \mathcal{O}_{P}\left(\mathbb{A}^{2}\right)\right),
$$

where $\mathcal{O}_{P}\left(\mathbb{A}^{2}\right)$ is the local ring of \mathbb{A}^{2} at P.
Proposition. Let F and G be polynomials in R. Suppose that F and G have no common factor and that $P \in V(F) \cap V(G)$. Then

$$
I(P, F \cap G)=\lim _{n \rightarrow \infty} \operatorname{dim}_{k}\left(R /\left(I(P)^{n}, F, G\right)\right)
$$

Proof. Without loss of generality, we may assume that $P=(0,0)$. So $I(P)=(x, y)$, and thus

$$
I(P, F \cap G)=\operatorname{dim}_{k}\left(R_{(x, y)} /(F, G)_{(x, y)}\right)
$$

Let $I_{0} \cap \cdots \cap I_{m}$ be the primary decomposition of (F, G). Assume that $V\left(I_{0}\right)=P$. Then $(F, G)_{(x, y)}=\left(I_{0}\right)_{(x, y)}$, because any element of $R \backslash I_{0}$ correspond to a unit in $R_{(x, y)}$. This implies that

$$
\operatorname{dim}_{k}\left(R_{(x, y)} /(F, G)_{(x, y)}\right)=\operatorname{dim}_{k}\left(R / I_{0}\right)_{(x, y)}=\operatorname{dim}_{k} R / I_{0} .
$$

Consider the ideal $I_{n}=I(P)^{n}+(F, G)$. This ideal is equal to

$$
\left(I(P)^{n}+I_{0}\right) \cap\left(I(P)^{n}+I^{\prime}\right)
$$

where $I^{\prime}=I_{1} \cap \cdots \cap I_{m}$. Since $V\left(I(P)^{n}+I^{\prime}\right)=\emptyset$, we obtain $I(P)^{n}+I^{\prime}=$ $k[x, y]$ (weak Nullstellensatz). So $I_{n}=I(P)^{n}+I_{0}$. Since $V\left(I_{0}\right)=P$, the $\sqrt{I_{0}}=(x, y)$. This implies that there exists an $n_{0} \in \mathbb{N}$ such that for all $n \geq n_{0}, I(P)^{n} \subseteq I_{0}$. For such an n,

$$
\operatorname{dim}_{k}\left(R /\left(I(P)^{n}, F, G\right)\right)=\operatorname{dim}_{k}\left(R / I_{0}\right),
$$

which completes the proof.

For each n, the quotient ring $Q_{n}:=R /\left(I(P)^{n}, F, G\right)$ is a finite-dimensional vector space over k. By using the gröbner basis technique, we can therefore describe the monomial basis B_{n} for this vector space (Macaulay's theorem), and the dimension of Q_{n} can be determined by counting the number of vectors in B_{n}. In Macaulay2, we can compute the monomial basis M for a given ring with the command basis if the ring is a finite-dimensional vector space. Let l be the number of the monomials in M. Then M is represented by a $1 \times l$ matrix:

$$
Q_{n}{ }^{M}{ }^{M} Q_{n}^{\oplus l}=\overbrace{Q_{n} \oplus \cdots \oplus Q_{n}}^{l} .
$$

The number of columns of this matrix is equal to the number of generators of the source. The source of a given matrix is represent by source plus the name of the matrix. The number of generators of the source can be counted with numgens.

Let a_{n} denote $\operatorname{dim}_{k}\left(Q_{n}\right)$. To determine the limit $\lim _{n \rightarrow \infty} a_{n}$, compute a_{n} for each $n \in \mathbb{N}$, and then terminate when $a_{n}=a_{n+1}$ (note that $a_{k} \leq a_{k+1}$ for each $k \in \mathbb{N}$). This algorithm can be implemented in Macaulay2. Let $I(P)$ be the ideal of the point $P=(0,0)$, and let F and G be irreducible polynomials in $k[x, y]$ with no common factors. The function intersectionNumber takes as an input the triple of $I(P),(F)$ and (G), and returns the intersection number $I(P, F \cap G)$ at P. Here is the code of the function intersectionNumber:

```
i1 : intersectionNumber=(point,idl,idl')->(
    i:=0;
    isStable:=false;
    while not isStable do (
    d:=numgens source basis(ringA2/(idl+idl'+point^(i+1)));
    d':=numgens source basis(ringA2/(idl+idl'+point^(i+2)));
    if d===d' then (
        isStable=true
        );
    i=i+1;
    );
    d)
01 = intersectionNumber
o1 : Function
```

Compute the intersection number $I(P, F \cap G)$ of C_{1} and C_{2} at $P=(0,0)$:
i2 : KK=QQ

```
o2 = QQ
o2 : Ring
    -- the class of all rational numbers
i3 : ringA2=KK[x,y]
o3 = ringA2
o3 : PolynomialRing
i4 : F=ideal( (y^2-x^3-x^2)
3 2 2
o4 = ideal(- x - x + y )
o4 : Ideal of ringA2
i5 : G=ideal((x^2+y^2)^2+2*x^2*y-y^3)
    4 2 2 4 4 2 3
o5 = ideal(x + 2x y + y + 2x y - y )
o5 : Ideal of ringA2
i6 : P=ideal(x,y)
o6 = ideal (x, y)
o6 : Ideal of ringA2
i7 : intersectionNumber(P,F,G)
o7 = 6
```

So $I(P, F \cap G)=6$.
The proof of the above proposition tells us that if $I_{0} \cap I_{1} \cap \cdots \cap I_{m}$ is the primary decomposition of (F, G) and if $V\left(I_{0}\right)=P$, then $I(P, F \cap G)=$ $\operatorname{dim}_{k}\left(R / I_{0}\right)$. Fortunately, we know the ideal $I(P)$ of P. So we can take
$V\left(I_{0}\right)$ away from $V(F, G)$ by computing $(F, G): I(P)^{\infty}$, which is the ideal $I^{\prime}=I_{1} \cap \cdots \cap I_{m}$. Then take the ideal quotient $(F, G): I^{\prime}$. This gives us the ideal I_{0} :

```
i8 : I'=saturate(F+G,P)
```

$08=$ ideal $\left(y^{3}+4 x^{2}-8 x * y-y^{2}+x-12 y-3, x^{2} y^{2}+x^{2}-x * y+3 y^{2}+y, x^{2}\right.$
०8 : Ideal of ringA2
i9 : $\mathrm{I} 0=(\mathrm{F}+\mathrm{G}): \mathrm{I}^{\prime}$
$09=$ ideal $\left(y^{3}, x^{2}+\mathrm{x}^{2}-\mathrm{y}^{2} \mathrm{x}^{2} \mathrm{x} y \mathrm{x}^{3}+\mathrm{x}^{2}-\mathrm{y}^{2}\right)$
o9 : Ideal of ringA2
i10 : numgens source basis(ringA2/IO)
$010=6$

