How to make free resolutions with Macaulay2

Chris Peterson and Hirotachi Abo

1. What are syzygies?

Let k be a field, let $R=k\left[x_{0}, \ldots, x_{n}\right]$ be the homogeneous coordinate ring of \mathbb{P}^{n} and let X be a projective variety in \mathbb{P}^{n}. Consider the ideal $I(X)$ of X. Assume that $\left\{f_{0}, \ldots, f_{t}\right\}$ is a generating set of $I(X)$ and that each polynomial f_{i} has degree d_{i}. We can express this by saying that we have a surjective homogenous map of graded S-modules:

$$
\bigoplus_{i=0}^{t} R\left(-d_{i}\right) \rightarrow I(X)
$$

where $R\left(-d_{i}\right)$ is a graded R-module with grading shifted by $-d_{i}$, that is,

$$
R\left(-d_{i}\right)_{k}=R_{k-d_{i}}
$$

In other words, we have an exact sequence of graded R-modules:

where $\mathbf{F}=\left(f_{0}, \ldots, f_{t}\right)$.
Example 1. Let $R=k\left[x_{0}, x_{1}, x_{2}\right]$. Consider the union P of three points $[0$: $0: 1],[1: 0: 0]$ and $[0: 1: 0]$. The corresponding ideals are $\left(x_{0}, x_{1}\right),\left(x_{1}, x_{2}\right)$ and $\left(x_{2}, x_{0}\right)$. The intersection of these ideals are $\left(x_{1} x_{2}, x_{0} x_{2}, x_{0} x_{1}\right)$. Let $I(P)$ be the ideal of P. In Macaulay2, the generating set $\left\{x_{1} x_{2}, x_{0} x_{2}, x_{0} x_{1}\right\}$ for $I(P)$ is described as a 1×3 matrix with gens:

```
i1 : KK=QQ
o1 = QQ
o1 : Ring
```

```
    -- the class of all rational numbers
i2 : ringP2=KK[x_0,x_1,x_2]
o2 = ringP2
o2 : PolynomialRing
i3 : P1=ideal(x_0,x_1); P2=ideal(x_1,x_2); P3=ideal(x_2,x_0);
o3 : Ideal of ringP2
04 : Ideal of ringP2
o5 : Ideal of ringP2
i6 : P=intersect(P1,P2,P3)
o6 = ideal (x x , x x , x x )
                        12 0 2 0 1
06 : Ideal of ringP2
i7 : gens P
o7 = | x_1x_2 x_0x_2 x_0x_1 |
    1 3
o7 : Matrix ringP2 <--- ringP2
```

Definition. The kernel M_{1} of \mathbf{F} will be a graded R-module generated by the relations among f_{0}, \ldots, f_{t-1} and f_{t}. To be more precise, M_{1} is a module of $(t+1)$-tuples $\mathbf{G}=\left(g_{0}, \ldots, g_{t}\right)$ such that $\mathbf{F} \cdot \mathbf{G}^{T}=0$. Note that M_{1} is finitely generated, unless $t=0$ (why?). An element of M_{1} is called a syzygy of $I(P)$), and M_{1} is called the module of syzygies of $I(P)$. Let $\left\{\mathbf{G}_{0}, \cdots, \mathbf{G}_{r}\right\}$ be a set of generators for M_{1}, where $\mathbf{G}_{j}=\left(g_{0}^{j}, \ldots, g_{t}^{j}\right)$. Then we have the following
figure:

where $\operatorname{deg}\left(g_{k}^{j}\right)+d_{k}=d_{j}^{\prime}$ for all $k=0, \ldots, t$.
Example 2. Let P be the union of three points given in Example 1, and let $I(P)$ be its ideal in R. Let's compute the syzygy module of $I(P)$. The command syz computes the syzygy module M_{1} for a given ideal, or more generally a given module M. The input is the matrix whose columns generates M. The command syz returns the matrix whose columns generates M_{1} :

```
i8 : syz gens P
08 = {2} | x_0 0 |
    {2} | 0 x_1 |
    {2} | -x_2 -x_2 |
```

 \(3 \quad 2\)
 ०8 : Matrix ringP2 <--- ringP2

The kernel of $\left(\mathbf{G}_{0}, \ldots, \mathbf{G}_{r}\right)$ is again a finitely generated R-module. Consider the relations among $\mathbf{G}_{0}, \ldots, \mathbf{G}_{r}$. They generate a new finitely generated graded R-module M_{2}.
Example 3. We have shown that for $I(P)$, the corresponding module M_{1} is represented by the following matrix:

where

$$
m R(-d)=\overbrace{R(-d) \oplus \cdots \oplus R(-d)}^{m} .
$$

Let $\mathbf{G}=\left(\mathbf{G}_{0}, \mathbf{G}_{1}\right)$ be the matrix whose columns generate M_{1}. What is the kernel of \mathbf{G} ? Let f and g be homogeneous polynomials in R. Assume that the R-linear combination $f \cdot \mathbf{G}_{0}+g \cdot \mathbf{G}_{1}$ is zero. This relation gives rise to the equations $f \cdot z=0$ and $g \cdot y=0$. So $f=g=0$, because both the polynomials f and g are nonzero-divisors in R. Thus we get the exact sequence of type:

$$
0 \rightarrow 2 R(-3) \rightarrow 3 R(-2) \rightarrow R \rightarrow \Gamma(P) \rightarrow 0 .
$$

Indeed,

```
08 : Matrix ringP2 <--- ringP2
i9 : syz (syz gens P)
o9 = 0
```

०9 : Matrix ringP2 ${ }^{2}$ <--- 0
Note that this sequence is exact at the level of vector spaces:

$$
0 \rightarrow 2 R(-3)_{d} \rightarrow 3 R(-2)_{d} \rightarrow R_{d} \rightarrow \Gamma(P)_{d} \rightarrow 0
$$

This exact sequence can be used to compute the Hilbert function $\operatorname{HF}(I(P), d)$:

$$
\begin{aligned}
\operatorname{dim}_{k}(\Gamma(V))_{d} & =\operatorname{dim}_{k}\left(R_{d}\right)-3 \cdot \operatorname{dim}_{k}\left(R(-2)_{d}\right)+2 \cdot \operatorname{dim}_{k}(R(-3)) \\
& =\binom{d+2}{2}-3 \cdot\binom{d}{2}+2 \cdot\binom{d-1}{2}=3
\end{aligned}
$$

2. Free resolutions.

The operation we performed can be repeated over and over again, and we can make a long exact sequence of free R-modules:

$$
\cdots \rightarrow F_{m} \rightarrow \cdots \rightarrow F_{2} \rightarrow F_{1} \rightarrow R \rightarrow \Gamma(V) \rightarrow 0
$$

This sequence is called a free resolution of $\Gamma(V)$. Obviously, a free resolution of a graded R-module M can be also computed in the same manner:

$$
\cdots \rightarrow F_{m} \rightarrow \cdots \rightarrow F_{2} \rightarrow F_{1} \rightarrow F_{0} \rightarrow M \rightarrow 0 .
$$

We say that such a resolution has length m if $F_{m} \neq 0$ but $F_{i}=0$ for all $i>m$.

A natural question is: "Can we make a finite free resolution for every finitely generated graded R-module?" If the answer is yes, we can compute the Hilbert function as follows:

$$
\operatorname{HF}(M, d)=\sum_{i=0}^{m}(-1)^{i} \operatorname{HF}\left(F_{i}, d\right) .
$$

We cannot expect the answer to be yes over a non-polynomial ring. But Hilbert showed the following theorem:
Theorem (Hilbert Syzygies Theorem, 1890). Every finitely generated graded $M R$-module has a finite free resolution:

$$
0 \rightarrow F_{m} \rightarrow \cdots \rightarrow F_{2} \rightarrow F_{1} \rightarrow F_{0} \rightarrow M \rightarrow 0 .
$$

Moreover, we may take $m \leq n+1$.
This theorem motivates us to compute a free resolution of a finitely generated module over a polynomial ring.

Example 4. Let's compute the free resolution of $\Gamma(P)$! In Macaulay2, we can compute a free resolution of a given module with the command resolution or the synonym res. These commands take as an input an ideal or a module and returns a free resolution.
Remark.
(1) The module itself is not displayed in the free resolution.
(2) In case the input is an ideal I, res computes the free resolution of R / I, but not I.

```
i22 : fP=res P
```

 13
 2
 o22 $=$ ringP2 <-- ringP2 <-- ringP2 <-- 0
0
1
2
3
o22 : ChainComplex
We can see all the differentials by adding the suffix . dd to the name of a free resolution:
i23 : fP.dd

$$
\begin{aligned}
& 1 \text { 3 } \\
& \text { o23 }=0 \text { : ringP2 <---------------------------- ringP2 : } 1 \\
& \text { | } \mathrm{x} _0 \mathrm{x}_{-} 1 \mathrm{x} _0 \mathrm{x}_{-} 2 \mathrm{x} _1 \mathrm{x} _2 \text { | } \\
& 3 \text { 2 } \\
& 1 \text { : ringP2 <--------------------- ringP2 : } 2 \\
& \text { \{2\} | -x_2 } 0 \text { | } \\
& \text { \{2\} | x_1 -x_1 | } \\
& \text { \{2\} | } 0 \quad \text { x_0 | } \\
& 2 \\
& 2 \text { : ringP2 <---- } 0: 3
\end{aligned}
$$

o23 : ChainComplexMap
The free resolution given above is of the following form:

$$
0 \rightarrow 2 R(-3) \rightarrow 3 R(-2) \rightarrow R \rightarrow \Gamma(V) \rightarrow 0 .
$$

The command betti gives information about the resolution looks like:

```
i12 : betti fP
o12 = total: 1 3 2
    0: 1 . .
    1: . }3
```

