Homework 1 (Math462)

Problem 1 (2 points)

For $f(x), g(x) \in \mathbb{Z}_{p}[x]$ given in (i) and (ii), find the quotient and remainder when dividing $f(x)$ by $g(x)$ in $\mathbb{Z}_{p}[x]$.
(i) $f(x)=[2] x^{3}+[3] x^{2}+[4] x+[1], g(x)=[3] x+[1] \in \mathbb{Z}_{5}[x]$.
(ii) $f(x)=[1] x^{4}+[2] x^{2}+[1] x+[1], g(x)=[1] x^{3}+[1] x^{2}+[2] x+[2] \in \mathbb{Z}_{3}[x]$.

Problem 2 (2 points)

For $f(x), g(x) \in \mathbb{Z}_{p}[x]$ given in (i) and (ii), find $\operatorname{gcd}(f(x), g(x))$.
(i) $f(x)=[1] x^{4}+[2] x^{2}+[1] x+[1], g(x)=[1] x^{3}+[1] x^{2}+[2] x+[2] \in \mathbb{Z}_{3}[x]$.
(ii) $f(x)=[1] x^{4}+[5] x^{2}+[2] x+[2], g(x)=[3] x^{2}+[2] \in \mathbb{Z}_{7}[x]$.

Problem 3 (2 points)

Let $f(x)=x^{2}+1 \in \mathbb{Z}_{2}[x]$ and let $I=\left\{s(x) f(x) \mid s(x) \in \mathbb{Z}_{2}[x]\right\}$. Recall that multiplication on $\mathbb{Z}_{2}[x] / I$ is defined by $[g(x)+I][h(x)+I]=g(x) h(x)+I$. Complete the multiplication table for $\mathbb{Z}_{2}[x] / I$.
Note. $\mathbb{Z}_{2}[x] / I$ has exactly four elements, namely $I, 1+I, x+I$ and $(x+1)+I$.
Problem 4 (2 points)
Let $R=\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$ or \mathbb{Z}_{ℓ}, let $f(x) \in R[x]$ and let $I=\{s(x) f(x) \mid s(x) \in$ $R[x]\}$. Prove that if $g(x), h(x), k(x) \in R[x]$, then
$[g(x)+I]\{[h(x)+I]+[k(x)+I]\}=[g(x)+I][h(x)+I]+[g(x)+I][k(x)+I]$.

Problem 5 (2 points)

Let $F=\mathbb{Q}, \mathbb{R}, \mathbb{C}$ or \mathbb{Z}_{p}, where p is prime, let $f(x), g(x) \in F[x]$ and let $I=\{s(x) f(x)+t(x) g(x) \mid s(x), t(x) \in F[x]\}$.
(i) Prove that I is a subgroup of $F[x]$.
(ii) Suppose that one of $f(x)$ and $g(x)$ is non-zero. Let $d(x)=\operatorname{gcd}(f(x), g(x))$. Prove that $I=\{u(x) d(x) \mid u(x) \in F[x]\}$.

