
1 Contrasts

To illustrate the concepts in this chapter, we will use the example of the drink taste test discussed in earlier
lectures. Suppose now that there are four groups: Soda Float, Calpis, Milk Tea and another green tea drink,
with 3 subjects per group. As before, we will refer to the treatment groups as 1, 2, 3, and 4, and the response
is a taste score. Refer to the SAS and R code for today’s lecture. The term contrast is used to describe a
comparison of means. Specifically, a contrast is a linear combination of the population means,

L =

g∑
i=1

wiµi that also satisfies
g∑
i=1

wi = 0.

We require that the coeffi cients wi sum to zero so that the comparison is meaningful (we would not be
interested in µ1 − 3µ2 for example). For contrasts we are generally interested in testing the null hypothesis
H0 : L =

∑g
i=1 wiµi = 0, against the alternative hypothesis HA : L =

∑g
i=1 wiµi 6= 0. Notice that our text

uses a slightly different notation to denote a contrast. Instead of the symbol L, which we use to express
the value of the contrast, they use w({µi}), which focuses attention on the wi values used to define the
contrast. They also point out that the value of a contrast does not depend on the restrictions on the αi
values. As an example, if we wished to test whether the two non-tea drinks differed from each other, we can
express the null hypothesis as H0 : 1µ1 − 1µ2 = µ1 − µ2 = 0. Here w1 = 1 and w2 = −1 (w3 = w4 = 0), so
w1+w2+w3+w4 = 0 as required. This is an example of a pairwise contrast, which is defined as a contrast
involving only two groups. An example of a non-pairwise contrast would be if we wished to test if the
average taste of the two tea drinks differed from the average taste of the two non-tea drinks. We can express
this null hypothesis as H0 : (µ1+µ2)/2− (µ3+µ4)/2 = 0. Here w1 = 1/2, w2 = 1/2, w3 = −1/2, w4 = −1/2,
so again w1 + w2 + w3 + w4 = 0, as required by the definition of a contrast. If we wanted to test the Soda
Float drink against the average of the two tea drinks, what would be the contrast? Another type of contrast
is a polynomial contrast, which is a comparison among the levels of a quantitative factor (like a dose level)
that correspond to a particular polynomial shape for the response. Contrasts for a linear trend or a quadratic
trend are the two most commonly used polynomial contrasts.
A property of a set of contrasts, called orthogonality, is useful when considering sets of tests. Two

contrasts

L1 =

g∑
i=1

w1iµi and L2 =
g∑
i=1

w2iµi are orthogonal if
g∑
i=1

w1iw2i
ni

= 0.

If the group sample sizes are equal then this is equivalent to
∑g
i=1 w1iw2i = 0. In the examples above, if

we identify the first contrast as L1 and the second contrast as L2, then w11 = 1, w12 = −1, w13 = w14 = 0,
are the coeffi cients for L1 and w21 = 1/2, w22 = 1/2, w23 = −1/2, w24 = −1/2, are the coeffi cients for L2.
Then if the sample sizes are equal,

∑g
i=1 w1iw2i = (1)(1/2) + (−1)(1/2) + (0)(−1/2) + (0)(−1/2) = 0, so L1

and L2 are orthogonal. Orthogonal contrasts are statistically independent, so that the outcome of testing
one contrast is independent of the outcome of testing the other contrast. In our example, whether or not the
two non-tea drinks have different taste gives no information about whether the average of the non-tea drinks
differ from the average of the two tea drinks. A set of more than two contrasts is mutually orthogonal if each
pair of contrasts in the set is orthogonal to each other. The concept of a contrast or a set of contrasts at first
seems somewhat esoteric, but in fact it is essential to understand these concepts to fully understand ANOVA,
particularly in complicated situations. The contrasts that you will use should depend on the questions of
scientific interest from your experiment.
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2 Inference for Contrasts

We can estimate the contrast

L =

g∑
i=1

wiµi with L̂ =
g∑
i=1

wiyi·, and V̂ ar(L̂) =MSE

g∑
i=1

w2i
ni
,

which leads to a t test of H0 : L =
∑g
i=1 wiµi = δ,

t =
L̂− δ
s.e.(L̂)

=

∑g
i=1 wiyi· − δ√
V̂ ar(L̂)

.

For a two-tailed test, the t value is compared to tα/2,df , where df is the degrees of freedom for MSE
(df = N-g for 1 way ANOVA). Confidence intervals for L can also be constructed as L̂ ± tα/2,df s.e.(L̂).
Alternatively, we can compute a sum of squares for the contrast L:

SSL = SSw =
(
∑g
i=1 wiyi·)

2∑g
i=1

w2i
ni

.

3 Orthogonal contrasts form a partition of SSTrt
As noted in the text, we can form as many orthogonal contrasts as we have degrees of freedom between
groups. Essentially these orthogonal contrasts partition the SSTrt into SSLi terms that allow us to separate
the total between group sum of squares into parts attributable to different contrasts. This can be a powerful
tool for understanding treatment effects. One example of this is when we use orthogonal polynomial contrasts
to partition dose effects into parts attributable to linear trend, quadratic trend, and higher-order trends.
For equally-spaced dosage levels with equal-sample-size groups, the coeffi cients for orthogonal polynomial
contrasts are given in Table D.6 on page 630 of our text.
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