1 Factorial Experiments, Treatment Structure, and Analysis

An experiment with more than one factor is a factorial experiment if all factor-level combinations are used.
Two advantages of this approach are i) the ability to detect interactions between treatments, and ii) more
efficiency (for all tests) than separate one-at-a-time experiments. Even if the data do not come from an
experiment, but the grouping factor is arranged into all combinations of some other factors, then we can
still say that the groups have factorial treatment structure. As an example, suppose that we measure blood
pressure on six groups of people: Male children, Female children, Male young adults, Female young adults,
Male middle aged adults, and Female middle ages adults. The factors of gender and age are not randomly
applied, but we can talk about the six groups having factorial treatment structure in these two factors.
Initially we will consider models for data where only two factors are used, and also we will at first only
consider balanced data, in which all treatment combinations have the same number, n, of replicates.

1.1 Data with factorial treatment structure

Suppose that we have an experiment with two factors, one at three levels, and the other at two levels. We can
denote a response by y;;r, where i = 1,...,a, and j = 1, ..., b, index the two treatment factors and k =1,...,n
indexes the replicates within a treatment combination. In the situation mentioned above, a = 3, b = 2, and
suppose there are 5 replicates per group so that n = 5.Then there are a total of 30 observations, and if we
ignore the factorial nature of the experiment and just consider the 3 x 2 = 6 different groups, the ’skeleton’
ANOVA table would be:

Source degrees of freedom
Combinations
Error
Total

However, we also know that a test for differences among the first factor levels hasa =1=3 —1 = 2 df]
and that a test for differences among the second factor levels has b —1 =2 — 1 = 1 df, so that the ANOVA
table could look like:

Source | degrees of freedom
Factor A

Factor B
?

Error
Total

The tests for Factor A and Factor B are called 'main effect tests’. But we are missing something in the
table. It is the other source of variation among the a * b combination means called the interaction effect. It
is easy to see the interpretation of these tests by viewing a profile plot, which is a plot of the combination
means. Usually we observe the profile plot of the sample means y,;., but we can also look at population
means [4;; to understand the idea of these tests. Refer to the figure with this lecture to see the a comparison
of main effects versus interaction effects with factorial experiments. So the skeleton ANOVA table for a
factorial analysis is then:



Source degrees of freedom
Factor A
Factor B

Interaction

Error

Total

See the table on page 181 of the text to show the full layout of the ANOVA table for analysis of a
two-factor factorial design.

1.2 Models for data with factorial treatment structure

As with the simpler Completely Randomized Design, with a Completely Randomized Factorial (CRF) design
we can use a means model:

Yijk = Mij T Eijk;

Or an effects model:

Yijk = b+ i + B + aBij + €iji

To connect the models we note that
pij = b+ o+ B + by

1.3 Contrasts for factorial effects

It is typically easier to specify contrasts using the means model form. Here is an example for a main effects
contrast for the A factor:

lar = M1 — H2.,

which is comparing level 1 of the A factor to level 2, averaging over the B factor (that is the dot notation).
Here is an example of a contrast for the B factor:

Ip1 = p.1 — pa,

which compares the two levels of the B factor averaging over the A factor. Here is an example of an
interaction contrast:

lapr = (11 — paz2) — (21 — po2),

which is checking to see if the difference between levels 1 and 2 of factor B differ between levels 1 and
2 of the A factor. Contrasts that compare levels of one factor while holding all other factors at a common
level are called simple effect contrasts. For example, j111 — 112 is a simple effect. One way to understand
interaction contrasts is that they examine differences in simple effects.



