Electric Lighting Calculations

Moon and Six Pence – Bath, UK

Two kinds of calculations

Task Lighting
(point source or line source method)

Two kinds of calculations

Task Lighting
(point source or line source method)

Ambient Lighting
(lumen or zonal cavity method)

Point Source Method

For the basic point source formula, the source can exceed 10% of the distance between the source and the reference point.

The basic formula is: \(\text{I} = \frac{\text{E}}{\pi d^2} \)
Line Source Method

Find the illuminance from a point or line source…

...need drawings…

...measure D = 26 ft. and \(\theta = 60^\circ \)…

Photometric

How to read Candlpower Distribution Curve

...and a photometric curve…
For multiple point and line sources:

If you have more than one point source in a room calculate the Fc from each source by either:

\[\text{total } Fc = Fc_1 + Fc_2 + \ldots + Fc_n \]

Warning: assumes IRC = 0

Lumen Method

Suitable for luminous ceilings or evenly-spaced lighting grids...

...rooms with ambient lighting or uniform lighting...

Zonal cavity method is same except it figures in floor reflectivity...
...but in real rooms light is reflected & absorbed by surfaces, this factor is labeled the coefficient of utilization (CU).

So the formula becomes:

\[fc = \frac{\text{lumens} \times \text{CU}}{\text{area}} \]

...also the fixture and other installation details reduce the light, this is labeled light loss factor (LLF).

So solving for lumens:

\[\text{lumens} = \frac{fc \times \text{area}}{\text{LLF} \times \text{CU}} \]

...the number of lumens in the room is determined by the number of fixtures, lamps per fixture, and lumens per lamp.

\[\text{lumens} = \frac{\# \text{fixtures} \times \text{lamps/fixture} \times \text{lumens/lamp}}{\text{area}} \]

...since the two previous formulas are solved for lumens, they can be combined to give:

\[\frac{\# \text{fixtures} \times \text{lamps/fixture} \times \text{lumens/lamp} = \frac{fc \times \text{area}}{\text{LLF} \times \text{CU}}}{\text{area}} \]
...we can solve this for either the number of fixtures (black)...
...or the amount of light in FC (green)...

\[
\# \text{ fixtures} = \frac{\text{FC} \times \text{Work Surface Area}}{\text{LIF} \times \text{CU} \times \text{Lamps/Luminaries} \times \text{Luminous Flux}}
\]

\[
\text{FC} = \frac{\# \text{ fixtures} \times \text{LIF} \times \text{CU} \times \text{Lamps/Luminaries} \times \text{Luminous Flux}}{\text{Work Surface Area}}
\]

fixtures for a new design

FC for an existing design

EXAMPLE

Try this for a simple room:

- 20’ x 40’ office space
- 12’ ceiling
- requires ~50 fc

The room size (20’ x 40’ = 800 sqft)
and illuminance requirement (50 fc)

Give us the numerator for our formula...

\[
\# \text{ fixtures} = \frac{\text{FC} \times \text{800 sqft}}{\text{whatever}}
\]

...the denominator isn’t so simple...
...pick a luminaire...

<table>
<thead>
<tr>
<th>Typical Luminaire</th>
<th>Distribution and Luminous Efficacy</th>
<th>Coefficients of Utilization for Effective Cavity Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Requirements:
- Requires two fluorescent tubes...

...pick a lamp...

...calculate the room cavity ratio...

\[\text{SCR} = \frac{\text{Area of cavity visible above work plane}}{\text{Area of work plane}} \]

\[\frac{2 \times (7.5 \times 10)}{2 \times (10.5 \times 9)} = \frac{150}{190} = 0.789 \]

\[\text{SCR} = 0.789 \]

...key to finding CU...
...need to know RCR, ceiling and wall reflectivity...

...interpolate CU = 0.54...

...plug in lamp, fixture, and CU info...

fixture = \(\frac{50 \times 800 \text{ sq ft}}{.50 \times .54 \times 2 \text{ lamps/million lumens/x 2770 lumens}} \)

\[\text{LLF} = \frac{\alpha \times \beta \times x \times \gamma \times d \times x \times f \times g \times L \times D}{\text{luminance dirt depreciation}} \]

...this alphabet soup of factors is described in MEEB 12 p 730...

Or you can approximate LLF = .65 for good, .55 for average, or .45 for poor conditions MEEB 12 p. 738
...then lay out the fixtures on reflected ceiling plan...
...hey is this 5 x 5 grid ok?...

Fixture manufacturers provide the data needed for either type of calculation.
So, how did the professionals do?

“Clerestory-like backlit panels”

“Indirect ambient lighting and LED task lights”
“T-5s behind a base of frosted glass panels (box office).”

“Vibration and buzz-free lighting for orchestra rehearsal”

Grand Staircase