Hydrologic Modeling of Vernal Pools to Support Restoration Design

Review of Existing Studies and Model Selection

May 8, 2009

BAE 558

Chris Campbell
Overview

- Background
- Previous and Current Studies
- Model Comparison and Selection
California vernal pools
- Host to a variety of endemic flora and fauna
- More than 60% destroyed (Barbour et al., 2003)
Background
General

- Vernal pool morphology
 - Undulating micro relief
 - Inundate in the rainy season
 - Desiccate in the summer

Hobson & Dahlgren (1998)

May 8, 2009
BAE 558
Chris Campbell
Background

General

- Vernal pool conservation / restoration
 - Compensatory mitigation
 - Mitigation monitoring
 - Community composition and species richness
 - Bi-weekly water level readings
 - No pre-construction monitoring
 - But what do we know about the hydrologic regime of vernal pools? Ecological drivers?
Background
Campbell’s Butte County Site

May 8, 2009
BAE 558
Chris Campbell
Previous Studies
Hanes & Stromberg (1998)

- How important are upland hydrologic contributions?
- Do constructed pools impact the hydrologic regime of natural pools?
- Conceptual upland water balance model
Previous Studies
Pyke (2002; 2004; 2005)

- What are the hydrologic variations in rain-fed vernal pools?
 - Seasonal
 - Inter-annual
 - Climate change

- Vernal pool hydrologic regime model, PHYDO

\[V_t = V_{t-1} + D + R + \Delta S - E_{ow} - O \]
Previous Studies
Williamson et al. (2005); Rains et al. (2006)

- Refine our understanding of VP hydrology
 - Three different study sites
 - How important are upland hydrologic contributions?

- Findings
 - The hydrologic regime varies significantly
 - Perched water tables are responsible for sustaining the water level regime
Current Studies
McCarten (in progress)

- Refine our understanding of VP hydrology
 - Reoccupy Williamson et al. (2005) study sites
 - Collect a lot of field data
 - Apply HYDRUS 2D/3D
- Develop relationships between ecology and hydrology
Current Studies
Campbell (in progress)

- Refine our understanding of VP hydrology
- Inform VP habitat conservation / restoration
 - What are the potential hydrologic impacts of constructed pools on natural pools?
 - Are post-construction monitoring protocols adequate?
- Which numerical model should I use?
 - HYDRUS 3D
 - FEFLOW F3
Model Comparison

- HYDRUS 3D vs FEFLOW F3
 - Both are finite element models for simulating 2D and 3D flow (plus transport and heat) in variably saturated media by numerically solving Richards equation
Model Comparison

Finite Element Mesh

- HYDRUS
- Mesh generator
- Structured, layered
- Unstructured, layered
- Horizontal or sloping lower boundary
- Adaptive mesh and BASD

May 8, 2009

Chris Campbell
Model Comparison
Conductivity and Retention

- **HYDRUS**
 - van Genuchten-Mualem
 - Modified van Genuchten
 - Brooks-Corey
 - Kosugi (log-normal)
 - Dual-porosity (immobile micropores)
 - Dual-permeability (micro and macropores mobile)

- **FEFLOW**
 - van Genuchten-Mualem
 - Modified van Genuchten
 - Brooks-Corey
 - Haverkamp (parametric)
 - Splines
 - Exponential
 - Linear

May 8, 2009
BAE 558
Chris Campbell
Model Comparison

Hysteresis

- **HYDRUS**
 - None
 - van Genuchten-Mualem only
 - In retention curve
 - In retention curve and conductivity
 - In retention curve (no pumping)
 - Select either drying or wetting curve

- **FEFLOW**
 - None
 - In retention curve
Model Comparison
Soil Properties for Water Flow

- HYDRUS
 - Manually specify
 - Soil catalog
 - Rosetta Lite v1.1

- FEFLOW
 - Manually specify

![Rosetta Lite v. 1.1 (June 2003)](image)

Chris Campbell
May 8, 2009
BAE 558
Model Comparison
Initial Conditions

- **HYDRUS**
 - Pressure head
 - Moisture content

- **FEFLOW**
 - Hydraulic head
 - Pressure head
 - Moisture content
 - Saturation
Model Comparison
Boundary Conditions

- HYDRUS
 - General
 - Transient
 - Cross constrained
 - Specific
 - Flux
 - Pressure head
 - Seepage face
 - Free drainage
 - Atmospheric
 - Precipitation
 - Evaporation
 - Transpiration

- FEFLOW
 - General
 - Transient
 - Cross constrained
 - Specific
 - Flux
 - Hydraulic head
 - Pressure head
 - Seepage face
 - Saturation
 - Moisture content
 - Free drainage
 - Atmospheric
 - Precipitation
 - Evapotranspiration

May 8, 2009
BAE 558
Chris Campbell
Model Comparison
Root Water Uptake

- HYDRUS
 - Feddes
 - S-shaped

- FEFLOW
 - Not available

May 8, 2009
Model Comparison
Overland Flow and Ponding

- **HYDRUS**
 - Overland flow
 - 2D only, plans for 3D
 - All water in excess of infiltration capacity is lost to surface runoff
 - Ponding
 - Trick it!!

- **FEFLOW**
 - Overland flow
 - All water in excess of infiltration capacity is lost to surface runoff
 - Ponding
 - Trick it!!
Model Comparison
GIS / CAD/ASCII Integration

- HYDRUS
 - Text file for geometry

- FEFLOW
 - ESRI shapefiles
 - AutoCAD DXF files
 - ASCII files
 - TIFF / JPEG
Model Comparison

Visuals / Post Processing / Particle Tracking

- HYDRUS
 Visuals
 - 1D, good
 - 2D, limited
 - 3D, poor
- FEFLOW
 Visuals
 - 2D, on
 - graphics
- FFEFlowExplorer
 Particle tracking
 - Yes

May 8, 2009
BAE 558
Chris Campbell
Model Comparison

Graphical User Interface

Chris Campbell
May 8, 2009

BAE 558
Model Selection Summary

- **HYDRUS**
 - Same core features
 - Better representation of physical process
 - Evapotranspiration
 - Macropores
 - Root water uptake
 - Overland flow and ponding an issue
 - User-friendly GUI

- **FEFLOW**
 - Same core features
 - FEM
 - Richards equation
 - Retention / conductivity
 - Advanced pre- and post-processing utilities
 - Overland flow and ponding an issue
 - Old school GUI

May 8, 2009

BAE 558

Chris Campbell
References

May 8, 2009 BAE 558 Chris Campbell