Strain

2.1 Displacement, Deformation, and

In the design of structural elements or machine components, the deformations sustained by
the body because of applied loads often represent a design consideration equally as
important as stress. For this reason, the nature of the deformations sustained by a real deform-
able body as a result of internal stress will be studied, and methods for calculating deforma-

tions will be established.

Displacement

When a system of loads is applied to a machine component or structural element,
individual points of the body generally move. This movement of a point with re-
spect to some convenient reference system of axes is a vector quantity known as
a displacement. In some instances, displacements are associated with a transla-
tion and/or rotation of the body as a whole. The size and shape of the body are not
changed by this type of displacement, which is termed a rigid-body displacement.
In Figure 2.1a, consider points H and K on a selid body. If the body is displaced
(both translated and rotated), points H and K will move to new locations H” and
K’. The position vector between H' and K’, however, has the same length as the
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X

FIGURE 2.12 Rigid-body displacement.
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position vector between A and K. In other words, the orientation of H and K relative to each
other does not change when a body undergoes a displacement.

Deformation

When displacements are caused by an applied load or a change in temperature, indi-
vidual points of the body move relative to each other. The change in any dimension
associated with these load- or temperature-induced displacements is known
as deformation. Figure 2.1b shows a body both before and after a deforma-
tion. For simplicity, the deformation shown in the figure is such that point H
does not change location; however, point K on the undeformed body moves
to location K after the deformation. Because of the deformation, the position

After deformation vector between H and K is much longer than the HK vector in the unde-

formed body. Also, notice that the grid squares shown on the body before
deformation (Figure 2.1a) are no longer squares after the deformation: Both
the size and the shape of the body have been altered by the deformation.
Under general conditions of loading, deformations will not be uniform
throughout the body. Some line segments will experience extensions, while

x  others will experience contractions. Different segments (of the same length)

FIGURE 2.1b Deformation of a body. along the same line may experience different amounts of extension or contrac-

FIGURE 2.2 Normal strain.

tion. Similarly, changes in the angles between line segments may vary with
position and orientation in the body. This nonuniform nature of load-induced deformations
will be investigated in more detail in Chapter 13.

Strain

Strain is a quantity used to provide a measure of the intensity of a deformation (deforma-
tion per unit length), just as stress is used to provide a measure of the intensity of an inter-
nal force (force per unit area). In Sections 1.2 and 1.3, two types of stresses were defined:
normal stresses and shear stresses. The same classification is used for strains. Normal
strain, designated by the Greek letter £ (epsilon), is used to provide a measure of the elon-
gation or contraction of an arbitrary line segment in a body after deformation. Shear strain,
designated by the Greek letter y (zamma), is used to provide a measure of angular distor-
tion (change in the angle between two lines that are orthogonal in the undeformed state).
The deformation, or strain, may be the result of a change in temperature, of a stress, or of
some other physical phenomenon, such as grain growth or shrinkage. In this book, only
strains resulting from changes in stress or temperature are considered.

Average Normal Strain

The deformation (change in length and width) of a simple bar under an axial load (see
Figure 2.2) can be used to illustrate the idea of a normal strain. The average normal strain
€,y Over the length of the bar is obtained by dividing the axial deformation & of the bar by
its initial length L; thus,

Eavg = (2.1)
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Accordingly, a positive value of § indicates that the axial member gets longer, and a |
| negative value of § indicates that the axial member gets shorter (termed contraction).

A normal strain in an axial

Normal Strain at a Point member is also termed an
: : i : axial strain.
In those cases in which the deformation is nonuniform along the length of the bar (e.g., a

long bar hanging under its own weight), the average normal strain given by Equation (2.1)
may be significantly different from the normal strain at an arbitrary point O along the bar.
The normal strain at a point can be determined by decreasing the length over which the
actual deformation is measured. In the limit, a quantity defined as the normal strain at the
point £(0) is obtained. This limit process is indicated by the expression
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Strain Units

Equations (2.1) and (2.2) indicate that normal strain is a dimensionless quantity; however,
normal strains are frequently expressed in units of in./in., mm/mm, m/m, Win./in., tm/m,
or pe. The symbol 1 in the context of strain is spoken as “micro,” and it denotes a factor of
1076, The conversion from dimensionless quantities such as in./in. or m/m to units of
“microstrain” (such as pin./in., um/m, or pe) is

1pe = 1x107% in/in, = 1 X 107° m/m

Since normal strains are small, dimensionless numbers, it is also convenient (o express
strains in terms of percent. For most engineered objects made from metals and alloys,
normal strains seldom exceed values of 0.2%. which is equivalent to 0.002 m/m.

Measuring Normal Strains Experimentally

Normal strains can be measured with a simple loop of wire called a strain gage. The

common strain gage (Figure 2.3) consists of a thin metal-foil grid that is bonded to the

surface of a machine part or a structural element. When loads or temperature changes are im-

posed, the object being tested elongates or contracts, creating normal strains. Since the  pj, ;e
strain gage is bonded to the object, it undergoes the same strain as the object. As the strain ~ backing
gage elongates or contracts, the electrical resistance of the metal-foil grid changes
proportionately. The relationship between strain in the gage and its corresponding change l\i;“;}j"‘l
in resistance is predetermined by the strain gage manufacturer through a calibration pro- orid 2
cedure for each type of gage. Consequently, the precise measurement of changes in resis-

tance in the gage serves as an indirect measure of strain. Strain gages are accurate and

extremely sensitive, enabling normal strains as small as 1 i€ to be measured. Applications  rGURE 2.3
involving strain gages will be discussed in more detail in Chapter 13.
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Sign Conventions for Normal Strains

From the definitions given by Equation (2.1) and Equation (2.2), normal strain is positive
when the object elongates and negative when the object contracts. In general, elongation
will occur if the axial stress in the object is tension. Therefore, positive normal strains are
referred to as tensile strains. The opposite will be true for compressive axial stresses; there-
fore, negative normal strains are referred to as compressive strains.
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In developing the concept of normal strain through example problems and exercises, it
is convenient to use the notion of a rigid bar. A rigid bar is meant to represent an object
| that undergoes no deformation of any kind. Depending on how it is supported, the rigid
bar may translate (i.e., move up/down or left/right) or rotate about a support location
' (see Example 2.1), but it does not bend or deform in any way regardless of the loads
acting on it If arigid bar is straight before loads are applied, then it will be straight after
loads are applied. The bar may translate or rotate, but it will remain straight.

A rigid bar ABCD is pinned at A and supported by two
steel rods connected at B and C, as shown. There is no
strain in the vertical rods before load P is applied.
After load P is applied, the normal strain in rod (2) is
800 pe. Determine

(a) the axial normal strain in rod (1).

(b) the axial normal strain in rod (1) if there is a
1 mm gap in the connection between the rigid
bar and rod (2) before the load is applied.

Plan the Solution
For this problem, the definition of normal strain will
be used to relate strain and elongation for each rod.

D

25 m

Since the rigid bar is pinned at A, it will rotate about

05m ) * p the support; however, it will remain straight. The

deflections at points B, C, and D along the rigid bar

can be determined by similar triangles. In part (b), the 1 mm gap will cause an increased

deflection in the rigid bar at point C, and this deflection will in turn lead to increased strain
in rod (1).

SOLUTION
(a) The normal strain is given for rod (2); therefore, the deformation in that rod can be
computed as follows:

0,

1 mm/
&y = — e 52 = £2L2 = (800 ME)[ I

I 1,000,000 pe

}(2,700 mm) = 2.16 mm

Note that the given strain value €, must be converted from units of € into dimensionless
units (i.e., mm/mm). Since the strain is positive, rod (2) elongates.

Because rod (2) is connected to the rigid bar and because rod (2) elongates, the rigid
bar must deflect 2.16 mm downward at joint C. However, rigid bar ABCD is supported by
apin at joint A, so deflection is prevented at its left end. Therefore, rigid bar ABCD rotates
about pin A. Sketch the configuration of the rotated rigid bar, showing the deflection that
takes place at C. Sketches of this type are known as deformation diagrams.

Although the deflections are very small, they have been greatly exaggerated here for
clarity in the sketch. For problems of this type, the small-deflection approximation

sinf = tanf = 6
is used, where 0 is the rotation angle of the rigid bar in radians.




To distinguish clearly between clongations

that occur in the rods and deflections at locations
along the rigid bar, rigid-bar transverse deflections
(i.e., deflections up or down in this case) will be

20m

denoted by the symbol v. Therefore, the rigid-bar
deflection at joint C is designated v.

We will assume that there is a perfect fit in the
pin connection at joint C; therefore, the rigid-bar
deflection at C is equal to the elongation that occurs
inrod (2) (vg = 85).

From the deformation diagram of the rigid-bar geometry, the rigid-bar deflection v
at joint B can be determined from similar triangles:

Yo . Ye 4 iy = M(z_m mm) = 0.96 mm
20m 45m

4.5m

If there is a perfect fit in the connection between rod (1) and the rigid bar at joint B, then
rod (1) elongates by an amount equal to the rigid-bar deflection at B; hence, 8, = vp.
Knowing the deformation produced in rod (1), we can now compute its strain:

8 _ 0.96 mm

= = —— = 0.000640 mm/mm = 640 Ans.
L, 1,500 mm He

&

(b) As in part (a), the deformation in the rod can be computed as

1 mm/mm

£,=2 .8 =g, = (800ug)| ——2mm
2 2= &ala = “‘C‘)L,ooo,oooue

}(2,700 mm) = 2.16 mm

Sketch the configuration of the rotated

rigid bar for case (b). In this case, there is T n
2 m

a 1 mm gap between rod (2) and the rigid
bar at C. Because of this gap, the rigid bar
will deflect 1 mm downward at C before it

2.0m

begins to stretch rod (2). The total deflec-
tion of C is made up of the | mm gap plus
the elongation that occurs in rod (2); hence,
ve=2.16 mm+ 1 mm = 3.16 mm.

As before, the rigid-bar deflection vy
at joint B can be determined from similar
triangles:

2.0
Ve _ Ve vy = =316 mm) = 1.404 mm
20m 45m 4.5m

Since there is a perfect fit in the connection between rod (1) and the rigid bar at joint B,
it follows that §; = v, and the strain in rod (1) can be computed:

6, _ 1404 mm

s = 0.000936 mm/mm = 936 e Ans.
Ly 1,500 mm

1

Compare the strains in rod (1) for cases (a) and (b). Notice that a very small gap at C
caused the strain in rod (1) to increase markedly.
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EXAMPLES

M2.1 A rigid steel bar ABC is supported by three rods.
There is no strain in the rods before load P is applied. After
load P is applied, the axial strain in rod (1) is 1,200 pe.

(a) Determine the axial strain in rods (2).

(b) Determine the axial strain in rods (2) if there is a 0.5 mm
gap in the connections between rods (2) and the rigid
bar before the load is applied.

200

M2.2 A rigid steel bar ABC is pinned at B and supported
by two rods at A and C. There is no strain in the rods before
Joad P is applied. After load P is applied, the axial strain in
rod (1) is +910 pe. Determine the axial strain in rod (2).

EXERCISES

520 mm

400 mm
1,250 mm

L A —————————

2

M2.4 The load P produces an axial strain of —1,800 pe in
post (2). Determine the axial strain in rod (1).

1,200 mm
=3

1.5 mm

600 mm

M2.1 A rigid horizontal bar ABC is supported by three vertical
rods. There is no strain in the rods before load P is applied. After
load P is applied, the axial strain is a specified value. Determine the
deflection of the rigid bar at B and the normal strain in rods (2) if
there is a specified gap between rod (1) and the rigid bar before the
load is applied.

FIGURE M2.1 P



M2.2 A rigid steel bar AB is pinned at A and supported by two  M2.3  Use normal-strain concepts for four introductory prob-
rods. There is no strain in the rods before load P is applied. After  lems using these two structural configurations.

load P is applied, the axial strain in rod (1) is a specified value.
Determine the axial strain in rod (2) and the downward deflection
of the rigid bar at B.

B
0.90 m 1.05 m 0.95 m
f T
Ve
FIGURE M2.2
FIGURE M2.3
P2.1 When an axial load is applied to the ends of the two- ) a ) b o
segment rod shown in Figure P2.1, the total elongation between w
joints A and C is 7.5 mm. The segment lengths are @ = 1.2 m and - —
b =2.8 m. In segment (2), the normal strain is measured as 2,075 pm/m. C
Determine )
(a) the elongation of segment (2). . d
(b) the normal strain in segment (1) of the rod. 4 ¥
¢
- x
P B
FIGURE P2.2
l‘B
! a | b | P2.3 Pin-connected rigid bars AB,
BC, and CD are initially held in the po-
FIGURE P2.1 sitions shown in Figure P2.3 by taut

wires (1) and (2). The bar lengths are

a=24ftand b= 18 ft. Joint C is given

a horizontal displacement of 5 in. to the ¢
P2.2  The two bars shown in Figure P2.2 are used to support load P.  right. (Note that this displacement
When unloaded, joint B has coordinates (0, 0). After load P is  causes both joints B and C to move to
applied, joint B moves to the coordinate position (-0.55 in.,—0.15in.).  the right and slightly downward.) What
Assume that a = 15 ft, b =27 ft, c= 11 ft, and d = 21 ft. Determine is the change in the average normal
the normal strain in each bar. strain in wire (1) after the displacement?  FIGURE P2.3




P2.4 Bar(])has alength of L; =2.50 m, and bar (2) has a length
of L, = 0.65 m. Initially, there is a gap of A = 3.5 mm between the
rigid plate at B and bar (2). After application of the loads P to the
rigid plate at B, the rigid plate moved to the right, stretching bar (1)
and compressing bar (2). The normal strain in bar (1) was measured
as 2,740 um/m after the loads P were applied. Determine the nor-
mal strain produced in bar (2).

FIGURE P2.4

P2.5 1InFigure P2.5, rigid bar ABC is supported by a pin at B and
by post (1) at A. However, there is a gap of A= 10 mm between the
rigid bar at A and post (1). After load P is applied to the rigid bar,
point C moves to the left by 8 mm. If the length of post (1) is L; =
1.6 m, what is the average normal strain that is produced in post
(1)? Use dimensions of @ = 1.25 m and » = 0.85 m.

L
” (1
FIGURE P2.5

P2.6 The rigid bar ABC is supported by three bars as shown in
Figure P2.6. Bars (1) attached at A and C are identical, each having
alength L; = 160 in. Bar (2) has a length L, = 110 in.; however, there
is a clearance ¢ = 0.25 in. between bar (2) and the pin in the rigid bar
at B. There is no strain in the bars before load P is applied, and
a =50 in. After application of load P, the tensile normal strain in bar
(2) is measured as 960 pe. What is the normal strain in bars (1)?

ngld bar

FIGURE P2.6

P2.7 Rigid bar ABCD is supported by two bars as shown in

Figure P2.7. There is no strain in the vertical bars before load P is

applied. After load P is applied, the normal strain in bar (2) is mea-

sured as —3,300 um/m. Use the dimensions L; = 1,600 mm, L, =

1,200 mm, a = 240 mm, » =420 mm, and ¢ = 180 mm. Determine

{(a) the normal strain in bar (1).

(b) the normal strain in bar (1) if there is a I mm gap in the
connection at pin C before the load is applied.

(c) the normal strain in bar (1) if there is a 1 mm gap in the
connection at pin B before the load is applied.

FIGURE P2.7

P2.8 The sanding-drum mandrel shown in Figure P2.8 is made
for use with a hand drill. The mandrel is made from a rubberlike
material that expands when the nut is tightened to secure the sand-
ing sleeve placed over the outside surface. If the diameter D of the
mandrel increases from 2.00 in. to 2.15 in. as the nut is tightened,
determine

(a) the average normal strain along a diameter of the mandrel.

(b) the circumferential strain at the outside surface of the mandrel.



Sanding sleeve e v is the specific weight of the material, y is the distance from the free (ie.,
/ bottom) end of the bar, and E is a material constant. Determine, in terms
; of y,L,and E,
D (a) the change in length of the bar due to its own weight.
(b) the average normal strain over the length L of the bar.
(c) the maximum normal strain in the bar.

P2.10 A steel cable is used to support an elevator cage at the

bottom of a 2,000 ft deep mine shaft. A uniform normal strain of

250 pin.fin. is produced in the cable by the weight of the cage. At

each point, the weight of the cable produces an additional normal

FIGURE P2.8 strain that is proportional to the length of the cable below the point.

If the total normal strain in the cable at the cable drum (upper end
of the cable) is 700 pin./in., determine

P2.9 The normal strain in a suspended bar of material of varying cross ~ (a) the strain in the cable at a depth of 500 ft.

section due to its own weight is given by the expression yy/3E, where  (b) the total elongation of the cable.

A deformation involving a change in shape (a distortion) can be used to illustrate a shear y

strain. An average shear strain y,,, associated with two reference lines that are orthogonal Py
in the undeformed state (two edges of the element shown in Figure 2.4) can be obtained by
dividing the shear deformation &, (the displacement of the top edge of the element with

— respect to the bottom edge) by the perpendicular distance L between these two edges. If the
deformation is small, meaning that siny = tany = y and cosy = 1, then shear strain can be
defined as
15}
= — 23
b =g @) FHGURE 2.4 Shear strain

For those cases in which the deformation is nonuniform, the shear strain at a point,
¥ (0), associated with two orthogonal reference lines x and y is obtained by measuring
the shear deformation as the size of the element is made smaller and smaller. In the
limit,

A0 0
lim = —
AL—0 AL dL

Y(0) = (2.4)

Since shear strain is defined as the tangent of the angle of distortion, and since the tangent
of that angle is equal to the angle in radians for small angles, an equivalent expression for
shear strain that is sometimes useful for calculations is

Y (0) = g— — 0 (2.5)




In this expression, 8 is the angle in the deformed state between two initially orthogonal
reference lines.

¥ Units of Strain

Equations (2.3) through (2.5) indicate that shear strains are dimensionless angular quanti-
ties, expressed in radians (rad) or microradians (prad). The conversion from radians, a
dimensionless quantity, to microradians is 1 prad = 1 x 1076 rad.

Measuring Shear Strains Experimentally

- X
FIGURE 2.5a A positive value Shear strain is an angular measure, and it is not possible to directly measure the extremely
for the shear strain ¥, means that  small angular changes typical of engineered structures. However, shear strain can be deter-

the angle 6" between the x and y mined experimentally by using an array of three strain gages called a strain rosette. Strain
axes decreases in the deformed rosettes will be discussed in more detail in Chapter 13.
object.

Sign Conventions for Shear Strains

Equation (2.5) shows that shear strains will be positive if the angle 0’ between the x and y
axes decreases. If the angle 6" increases, the shear strain is negative. To state this relation-
ship another way, Equation (2.5) can be rearranged to give the angle 0 in the deformed
state between two reference lines that are initially 90° apart:

% B T.ry
, T
R B e 5 e
FIGURE 2.5b The angle If the value of y,, is positive, then the angle 6 in the deformed state will be less than 90°
between the x and y axes (i.e., less than 7r/2 rad) (Figure 2.5a). If the value of y ., is negative, then the angle 6’ in the
increases when the shear deformed state will be greater than 90° (Figure 2.5b). Positive and negative shear strains
strain ¥, has a negative value. are not given special or distinctive names.

EXAMPLE 2.2

The shear force V shown causes side @S of the thin rectangular plate to displace
downward 0.0625 in. Determine the shear strain y, at P.

Plan the Solution

; Shear strain is an angular measure. Determine the angle between the x axis and side
lv PQ of the deformed plate.
Q|

SOLUTION
" Determine the angles created by the 0.0623 in. deformation. Note: The small-angle
0.0625in.  approximation will be used here; therefore, siny = tany = y, and we have

_ 0.0625 in.
8 in.

= 0.0078125 rad




In the undeformed plate, the angle at P is /2 rad. After the plate is deformed, the angle
at P increases. Since the angle after deformation is equal to (7/2) — 7, the shear strain
at P must be a negative value. A simple calculation shows that the shear strain at P is the
shear strain at P is

y = —0.00781 rad Ans.

X

0.0625 in.

o

A thin rectangular plate is uniformly deformed as shown. Determine the shear strain y , at P.

Plan the Solution

Shear strain is an angular measure. Determine the two angles created by the (.25 mm
deflection and the 0.30 mm deflection. Add these two angles together to determine the
shear strain at P.

720
SOLUTION
Determine the angles created by each deformation. Note: The small-angle approxima-
tion will be used here; therefore, siny = tany = y. From the given data, we obtain

.50
yyo= D90 0604 1ad
720 mm
23
yy = Q22 _ G 500521 rad
480 mm
The shear strain at P is simply the sum of these two angles:
¥ =71 + 72 = 0000694 rad + 0.000521 rad = 0.001215 rad 720
= 1,215 urad Ans.
Note: The angle at P in the deformed plate is less than 77/2, as it should be for a positive

shear strain. Although not requested in the problem, the shear strain at corners O and R
will be negative and will have the same magnitude as the shear strain at corner P.
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EXAMPLE

M2.5 A thin triangular plate is uniformly deformed. Deter- Elate PQRS bietote defotmation Plate FORS after deformation
mine the shear strain at P after point P has been displaced 200 mm 200 mm, [ 200 mm (300 mm,
1 mm downward.




PROBLEMS

P2.11 A thinrectangular polymer plate PORS of width »=400 mm
and height @ = 180 mm is shown in Figure P2.11. The plate is de-
formed so that corner Q is displaced upward by ¢ = 3.0 mm and
corner S is displaced leftward by the same amount. Determine the
shear strain at corner P after deformation.

¥
—)IC(—
r"_'_.—.',—._‘ J
@ 1
\
a \ _‘__,_L a
g ¢
— X
P
5 o 1
FIGURE P2.11

P2.12 A thin triangular plate POR forms a right angle at point Q.
During deformation, peint Q moves to the right by # = 0.8 mm
and upward by v = 1.3 mm to new position @', as shown in Fig-
ure P2.12. Determine the shear strain ¥ at corner Q” after deforma-
tion. Use a =225 mm, b =455 mm, and d = 319.96 mm.

L ”?\
g S
A N
i
4 £ "
P R
a b
)
FIGURE P2.12

P2.13 A thin triangular plate POR forms a right angle at point
Q. During deformation, point Q moves to the left by = 2.0 mm and
upward by v= 5.0 mm to new position (', as shown in Figure P2.13.
Determine the shear strain y at corner O’ after deformation. Use
¢ =700 mm, & = 28°, and 3 = 62°.

FIGURE P2.13

P2.14 A thin square polymer plate is deformed into the position
shown by the dashed lines in Figure P2.14. Assume that @ = 800 mm,
b =85 mm, and ¢ = 960 mm. Determine the shear strain y,, (a) at
corner P and (b) at corner Q, after deformation.

i

i
\

FIGURE P2.14

P2.15 A thin square plate PORS is symmetrically deformed into
the shape shown by the dashed lines in Figure P2.15. The initial
length of diagonals PR and QS is d = 295 mm. After deformation,
diagonal PR has a length of dpp = 295.3 mm and diagonal OS5 has a
length of dgg = 293.7 mm. For the deformed plate, determine

(a) the normal strain of diagonal OS.
(b) the shear strain y,, at corner P.

}f
Undeformed
7 I~
S Deformed
p o
dos P xR 5
N /e
o //
Q
d
1
dpr
FIGURE P2.15



When unrestrained, most engineering materials expand when heated and contract when
cooled. The thermal strain caused by a one-degree (1°) change in temperature is designated
by the Greek letter ¢ (alpha) and is known as the coefficient of thermal expansion. The
strain due to a temperature change of A7 is

The coefficient of thermal expansion is approximately constant over a considerable range
of temperatures. (In general, the coefficient increases with an increase in temperature.) For
a uniform material (termed a homogeneous material) that has the same mechanical
properties in every direction (termed an isotropic material), the coefficient applies to all
dimensions (i.e., all directions). Values of the coefficient of expansion for common materi-
als are included in Appendix D.

(2.6)

Total Strains

Strains caused by temperature changes and strains caused by applied loads are essentially
independent. The total normal strain in a body acted on by both temperature changes and
an applied load is given by

2.7

Epral = &g t+ &r

Since homogeneous, isotropic materials, when unrestrained, expand uniformly in all direc-
tions when heated (and contract uniformly when cooled), neither the shape of the body nor
the shear stresses and shear strains are affected by temperature changes.

EXAMPLE 2.4

A material of uniform
composition is called a
homogeneous material. In
materials of this type, local
variations in composition

can be considered negligible
for engineering purposes.
Furthermore, homogeneous
materials cannot be
mechanically separated

into different materials

(the way carbon fibers in a
polymer matrix can). Common
homogeneous materials are
metals, alloys, ceramics,
glass, and some Lypes

of plastics.

An isotropic material has the
same mechanical properties in
all directions.

A steel bridge beam has a total length of 150 m. Over the course
of a year, the bridge is subjected to temperatures ranging from

. —40°C to +40°C, and the associated temperature changes cause the
beam to expand and contract. Expansion joints between the bridge
beam and the supports at the ends of the bridge (called abutments)
are installed to allow this change in length to take place without
restraint. Determine the change in length that must be accommo-
dated by the expansion joints. Assume that the coefficient of ther-
mal expansion for steel is 11.9 x 107%/°C .

Expansion permitted

Plan the Solution

Determine the thermal strain from Equation (2.6) for the total tem-
perature variation. The change in length is the product of the ther-
mal strain and the beam length.

Typical “finger-type” expansion joint for bridges.
YP




SOLUTION
The thermal strain for a temperature variation of 80°C (40°C — (—40°C) = 80°C}) is

gr = o AT = (11.9 x 1078 /°C)(80°C) = 0.000952 m/m
The total change in the beam length is, therefore,

07 = €L =(0.000952 m/m)(150 m) = 0.1428 m = 142.8 mm Ans.

Thus, the expansion joint must accommodate at least 142.8 mm of horizontal movement.

Cutting |
tool

Shrink-fit

| toolholder

Cutting tools such as mills and drills are connected to machining equipment by means of
toolholders. The cutting tool must be firmly clamped by the toolholder to achieve precise
machining, and shrink-fit toolholders take advantage of thermal expansion properties to
achieve this strong, concentric clamping force. To insert a cutting tool, the shrink-fit
holder is rapidly heated while the cutting tool remains at room temperature. When the holder
has expanded sufficiently, the cutting tool drops into the holder. The holder is then cooled,
clamping the cutting tool with a very large force exerted directly on the tool shank.

At 20°C, the cutting tool shank has an outside diameter of 18.000 +0.005 mm and the
toolholder has an inside diameter of 17.950 £+ 0.005 mm. If the tool shank is held at 20°C,
what is the minimum temperature to which the toolholder must be heated in order to insert
the cutting tool shank? Assume that the coefficient of thermal expansion of the toolholder
i811.9 % 107%/°C,

Plan the Solution

Use the diameters and tolerances to compute the maximum outside diameter of the
shank and the minimum inside diameter of the holder. The difference between these
two diameters is the amount of expansion that must occur in the holder. For the tool
shank to drop into the holder, the inside diameter of the holder must equal or exceed the
shank diameter.

SOLUTION

The maximum outside diameter of the shank is 18.000 + 0.005 mm = 18.005 mm. The
minimum inside diameter of the holder is 17.950 — 0.005 mm = 17.945 mm. Therefore,
the inside diameter of the holder must be increased by 18.005 — 17.945 mm = 0.060 mm.
To expand the holder by this amount requires a temperature increase

0.060 mm

6; = o ATd = 0.060 mm SAT = = 281°C
(11.9 x 107%/°C)(17.945 mm)
Thus, the toolholder must attain a minimum temperature of
20°C + 281°C = 301°C Ans.




PROBLEMS

P2.16 An airplane has a half-wingspan of 96 ft. Determine the
change in length of the aluminum alloy [¢/ = 13.1 X 107%/°F] wing
spar if the plane leaves the ground at a temperature of 59°F and
climbs to an altitude where the temperature is —70°F.

P2.17 A square high-density polyethylene o = 158 x 107%/°C]
plate has a width of 300 mm. A 180 mm diameter circular hole is
located at the center of the plate. If the temperature of the plate in-
creases by 40°C, determine

(a) the change in width of the plate.
(b) the change in diameter of the hole.

P2.18 A circularsteel [ = 6.5 x 107%/°F]band is to be mounted
on a circular steel drum. The outside diameter of the drum is 50 in.
The inside diameter of the circular band is 49.95 in. The band will
be heated and then slipped over the drum. After the band cools, it
will grip the drum tightly. This process is called shrink fitting. If the
temperature of the band is 72°F before heating, compute the mini-
mum temperature to which the band must be heated so that it can be
slipped over the drum. Assume that an extra 0.05 in. in diameter is
needed for clearance so that the band can be easily slipped over the
drum. Assume that the drum diameter remains constant.

P2.19 At a temperature of 60°F, a gap of a = 0.125 in. exists
between the two polymer bars shown in Figure P2.19. Bar (1) has a
length L, = 40 in. and a coefficient of thermal expansion of &; =
47 x 1075/°F. Bar (2) has a length L, = 24 in. and a coefficient of
thermal expansion of &, = 66 x 107%/°F. The supports at A and D
are rigid. What is the lowest temperature at which the gap is closed?
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FIGURE P2.19

P2.20 An aluminum pipe has a length of 60 m at a temperature
of 10°C. An adjacent steel pipe at the same temperature is 5 mm
longer. At what temperature will the aluminum pipe be 15 mm lon-
ger than the steel pipe? Assume that the coefficient of thermal ex-
pansion of the aluminum is 22.5 x 107%/°C and that the coefficient
of thermal expansion of the steel is 12.5 x 1075/°C.

P2.21 The simple mechanism shown in Figure P2.21 can be
calibrated to measure temperature change. Use dimensions of a =
25 mm, b = 90 mm, and L; = 180 mm. The coefficient of thermal
expansion of member (1) is 23.0 x 1075/°C. Determine the horizon-
tal displacement of pointer tip D for the mechanism shown in re-
sponse to a temperature increase of 35°C. Assume that pointer BCD
is not affected significantly by temperature change.

Smooth pins

FIGURE P2.21

P2.22 For the assembly shown
in Figure P2.22. high-density
polyethylene bars (1) and (2) each
have coefficients of thermal ex-
pansion of o = 88 x 107%/°F. If
the temperature of the assembly is
decreased by 50°F from its initial
temperature, determine the result-
ing displacement of pin B. As-
sume that b =32 in. and 8 = 55°.

FIGURE P2.22




