Mechanical Properties
of Materials

To design a structural or mechanical component properly, the engineer must understand the
characteristics of the component and work within the limitations of the material used in it.
Materials such as steel, aluminum, plastic, and wood each respond uniquely to applied
loads and stresses. To determine the strength and characteristics of materials such as these
requires laboratory testing. One of the simplest and most effective laboratory tests for ob-
taining engineering design information about a material is called the tension test.

The tension test is very simple. A specimen of the material, usually a round rod or a
flat bar, is pulled with a controlled tension force. As the force is increased, the elongation
of the specimen is measured and recorded. The relationship between the applied load and
the resulting deformation can be observed from a plot of the data. This load—deformation
plot has limited direct usefulness, however, because it applies only to the specific specimen
(meaning the specific diameter or cross-sectional dimensions) used in the test procedure.

A more useful diagram than the load-deformation plot is a plot showing the relation-
ship between stress and strain, called the stress—strain diagram. The stress—strain diagram
is more useful because it applies to the material in general rather than to the particular




MECHANICAL PROPERTIES
OF MATERIALS

Extensometer

Lower §
grip §

FIGURE 3.1
setup.

Tension test

Upset
threads

FIGURE 3.2 Tension test
specimen with upset threads.

MecMovies 3.1 shows an
animated tension test.

specimen used in the test. The information obtained from the stress—strain diagram can be
applied to all components, regardless of their dimensions. The load and elongation data
obtained in the tension test can be readily converted to stress and strain data.

Tension Test Setup

To conduct the tension test, the test specimen is inserted into grips that hold the specimen
securely while a tension force is applied by the testing machine (Figure 3.1). Generally, the
lower grip remains stationary while the upper grip moves upward, thus creating tension in
the specimen.

Several types of grips are commonly used, depending on the specimen being tested.
For plain round or flat specimens, wedge-type grips are often used. The wedges are used in
pairs that ride in a V-shaped holder. The wedges have teeth that bite into the specimen.
The tension force applied to the specimen drives the wedges closer together, increasing the
clamping force on the specimen. More sophisticated grips use fluid pressure to actuate
the wedges and increase their holding power.

Some tension specimens are machined by cutting threads on the rod ends and reducing
the diameter between the threaded ends (Figure 3.2). Threads of this sort are called upset
threads. Since the rod diameter at the ends is larger than the diameter of the specimen, the pres-
ence of the threads does not reduce the strength of the specimen. Tension specimens with upset
threads are attached to the testing machine by means of threaded specimen holders, which
eliminate any possibility that the specimen will slip or pull out of the grips during the test.

An instrument called an extensometer is used to measure the elongation in the ten-
sion test specimen. The extensometer has two knife-edges, which are clipped to the test
specimen (clips not shown in Figure 3.1). The initial distance between the knife-edges is
called the gage length. As tension is applied, the extensometer measures the elongation
that occurs in the specimen within the gage length. Extensometers are capable of very
precise measurements—elongations as small as 0.0001 in. or 0.002 mm. They are avail-
able in a range of gage lengths, with the most common models ranging from 0.3 in. to
2 in. (in U.S. units) and from 8 mm to 100 mm (in SI units).

Tension Test Measurements

Several measurements are made before, during, and after the test. Before the test, the cross-
sectional area of the specimen must be determined. The area of the specimen will be used
with the force data to compute the normal stress. The gage length of the extensometer
should also be noted. Normal strain will be computed from the deformation of the speci-
men (i.e., its axial elongation) and the gage length. During the test, the force applied to the
specimen is recorded and the elongation in the specimen between the extensometer knife-
edges is measured. After the specimen has broken, the two halves of the specimen are fitted
together so that the final gage length and the diameter of the cross section at the fracture
location can be measured. The average engineering strain determined from the final and
initial gage lengths provides one measure of ductility. The reduction in area (between the
area of the fracture surface and the original cross-sectional area) divided by the original
cross-sectional area provides a second measure of the ductility of the material. The term
ductility describes the amount of strain that the material can withstand before fracturing.

Tension Test Results. The typical results from a tension test of a ductile metal are shown
in Figure 3.3. Several characteristic features are commonly found on the load—deformation
plot. As the load is applied, there is a range in which the deformation is linearly related to
the load (1). At some load, the load-deformation plot will begin to curve and there will be
noticeably larger deformations in response to relatively small increases in load (2). As the
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load is continually increased, stretching in the specimen will be obvious (3). At some point,
a maximum load intensity will be reached (4). Immediately following this peak, the speci-
men will begin to narrow and elongate markedly at one specific location, causing the load
acting in the specimen to decrease (5). Shortly thereafter, the specimen will fracture (6),
breaking into two pieces at the narrowest cross section.

Another interesting characteristic of materials, particularly metals, can be observed if
the test is interrupted at a point beyond the linear region. For the test depicted in Figure 3.3,
the specimen was loaded into region (3) and then the load was removed. In that case, the
specimen does not unload along the original loading curve. Rather, it unloads along a path
that is parallel to the initial linear plot (1). Then, when the load is completely removed, the
deformation of the specimen is not zero, as it was at the outset of the test. In other words,
the specimen has been permanently and irreversibly deformed. When the test resumes and
the load is increased, the reloading path follows the unloading path exactly. As it ap-
proaches the original load—deformation plot, the reloading plot begins to curve (7) in a
fashion similar to region (2) on the original plot. However, the load at which the reloading
plot markedly turns (7) is larger than it was in the original loading (2). The process of
unloading and reloading has strengthened the material so that it can withstand a larger
Joad before it becomes distinctly nonlinear. The unload-reload behavior seen here is a
very useful characteristic, particularly for metals. One technique for increasing the
strength of a material is a process of stretching and relaxing called work hardening.

Preparing the Stress—Strain Diagram. The load—deformation data that are obtained
in the tension test provide information about only one specific size of specimen. The test
results are more useful if they are generalized into a stress—strain diagram. To construct a
stress—strain diagram from tension test results,

(a) divide the specimen elongation data by the extensometer gage length to obtain the
normal strain,

(b) divide the load data by the initial specimen cross-sectional area to obtain the normal
stress, and

(c) plot strain on the horizontal axis and stress on the vertical axis.

" THE TENSION TEST
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animated discussion of stress—
strain diagrams.

Most engineered components are
designed to function elastically
to avoid permanent deformations
that occur after the proportional
limit is exceeded. In addition, the
size and shape of an object are
not significantly changed if
strains and deformations are kept
small. This property can be a
particularly important consider-
ation for mechanisms and
machines, which consist of many
parts that must fit together to
operate properly.

Typical stress—strain diagrams for an aluminum alloy and a low-carbon steel are shown in
Figure 3.4. Material properties essential for engineering design are obtained from the
stress—strain diagram. These stress—strain diagrams will be examined to determine several
important properties, including the proportional limit, the elastic modulus, the yield
strength, and the ultimate strength. The difference between engineering stress and true
stress will be discussed, and the concept of ductility in metals will be introduced.

Proportional Limit

The proportional limit is the stress at which the stress—strain plot is no longer linear. Strains
in the linear portion of the stress—strain diagram typically represent only a small fraction of
the total strain at fracture. Consequently, it is necessary to enlarge the scale to observe the
linear portion of the curve clearly. The linear region of the aluminum alloy stress—strain dia-
gram is enlarged in Figure 3.5. A best-fit line is plotted through the stress—strain data points.
The stress at which the stress—strain data begin to curve away from this line is called the
proportional limit. The proportional limit for this material is approximately 43.5 ksi.

Recall the unload-reload behavior shown in Figure 3.3. As long as the stress in the
material remains below the proportional limit, no permanent damage will be caused during
loading and unloading. In an engineering context, this property means that a component can
be loaded and unloaded many, many times and it will still behave “just like new.” The prop-
erty is called elasticity, and it means that a material returns to its original dimensions during
unloading. The material itself is said to be elastic in the linear region.

Elastic Modulus

Most components are designed to function elastically. Consequently, the relationship
between stress and strain in the initial, linear region of the stress—strain diagram is of
particular interest regarding engineering materials. In 1807, Thomas Young proposed char-
acterizing the material’s behavior in the elastic region by the ratio between normal stress
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FIGURE 3.4 Typical stress—strain diagrams for two common metals.
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and normal strain. This ratio is the slope of the initial straight-line portion of the stress—
strain diagram. It is called Young’s modulus, the elastic modulus, or the modulus of
elasticity, and it is denoted by the symbol E:

(3.1)

The elastic modulus E is a measure of the material’s siffness. In contrast to strength
measures, which predict how much load a component can withstand, a stiffness measure
such as the elastic modulus E is important because it defines how much stretching, com-
pressing, bending, or deflecting will occur in a component in response to the loads acting
on it.

In any experimental procedure, there is some amount of error associated with making
a measurement. To minimize the effect of this measurement error on the computed elastic
modulus value, it is better to use widely separated data points to calculate E. In the linear
portion of the stress—strain diagram, the two most widely spaced data points are the propor-
tional limit point and the origin. Using the proportional limit and the origin, we would
compute the elastic modulus E as

43.5 ksi

o Bl R :
0.0041 in /in. o (B2

In practice, the best value for the elastic modulus E is obtained from a least-squares fit of a
line to the data between the origin and the proportional limit. Using a least-squares analysis,
we find that the elastic modulus for this material is £ = 10,750 ksi.

Work Hardening

The effect of unloading and reloading on the load—deformation plot was shown in
Figure 3.3. The effect of unloading and reloading on the stress—strain diagram is shown

" THE STRESS-STRAIN DIAGRAM




MECHANICAL PROPERTIES

OF MATERIALS

80 4
Elastic | Inelastic
70 strain strain
B "
60 i
/

~ B0
< /
é 40 Unload ’/V
w

304 K

// Reload
2- 4
Plastic i {lf Elastic
. ’a
10 deformation / /4 recovery
0 C 14/
0 1 T 1 1 1 L]
0.0020 0.0060 0.0100
0.0000 0.0040 0.0080 0.0120

Strain (in./in.)
FIGURE 3.6 Work hardening.

in Figure 3.6. Suppose that the stress acting on a material is increased above the propor-
tional limit stress to point B. The strain between the origin O and the proportional limit A
is termed elastic strain. This strain will be fully recovered after the stress is removed from
the material. The strain between the points A and B is termed inelastic strain. When the
stress is removed (i.e., unloaded), only a portion of this strain will be recovered. As stress
is removed from the material, it unloads on a path parallel to the elastic modulus line—that
is, parallel to path OA. A portion of the strain at B is recovered elastically. However, a
portion of the strain remains in the material permanently. This strain is referred to as
residual strain or permanent set or plastic deformation. As stress is reapplied, the
material reloads along path CB. Upon reaching point B, the material will resume following
the original stress—strain curve. The proportional limit after reloading becomes the stress at
point B, which is greater than the proportional limit for the original loading (i.e., point A).
This phenomenon is called work hardening, because it has the effect of increasing the
proportional limit for the material.

In general, a material acting in the linear portion of the stress—strain curve is said
to exhibit elastic behavior. Strains in the material are temporary, meaning that all strain
is recovered when the stress on the material is removed. Beyond the elastic region, a
material is said to exhibit plastic behavior. Although some strain in the plastic region is
temporary and can be recovered upon removal of the stress, a portion of the strain in the
material is permanent. The permanent strain is termed plastic deformation.

Elastic Limit

Most engineered components are designed to act elastically, meaning that when loads are
released, the component will return to its original, undeformed configuration, For proper
design, therefore, it is important to define the stress at which the material will no longer
behave elastically. With most materials, there is a gradual transition from elastic to plastic
behavior, and the point at which plastic deformation begins is difficult to define with preci-
sion. One measure that has been used to establish this threshold is termed the elastic limit.



The elastic limit is the largest stress that a material can withstand without any
measurable permanent strain remaining after complete release of the stress. The procedure
required to determine the elastic limit involves cycles of loading and unloading, each time
incrementally increasing the applied stress (Figure 3.7). For instance, stress is increased to
point A and then removed, with the strain returning to the origin O. This process is repeated
for points B, C, D, and E. In each instance, the strain returns to the origin O upon unload-
ing. Eventually, a stress will be reached (point F) such that not all of the strain will be re-
covered during unloading (point G). The elastic limit is the stress at point .

How does the elastic limit differ from the proportional limit? Although such materials are
not common in engineered applications, a material can be elastic even though its stress—strain
relationship is nonlinear. For a nonlinear elastic material, the elastic limit could be substan-
tially greater than the proportional limit stress. Nevertheless, the proportional limit is generally
favored in practice since the procedure required to establish the elastic limit is tedious.

Yielding

For many common materials (such as the low-carbon steel shown in Figure 3.4 and enlarged
in Figure 3.8), the elastic limit is indistinguishable from the proportional limit. Past the
elastic limit, relatively large deformations will occur for small or almost negligible in-
creases in stress. This behavior is termed yielding.

A material that behaves in the manner depicted in Figure 3.8 is said to have a yield
point. The yield point is the stress at which there is an appreciable increase in strain with no
increase in stress. Low-carbon steel, in fact, has two yield points. Upon reaching the upper
yield point, the stress drops abruptly to a sustained lower yield point. When a material yields
without an increase in stress, the material is often referred to as being perfectly plastic.
Materials having a stress—strain diagram similar to Figure 3.8 are termed elastoplastic.

Not every material has a yield point. Materials such as the aluminum alloy shown in
Figure 3.4 do not have a clearly defined yield point. While the proportional limit marks the
uppermost end of the linear portion of the stress—strain curve, it is sometimes difficult in prac-
tice to determine the proportional limit stress, particularly for materials with gradual transi-
tion from a straight line to a curve. For such materials, a yield strength is defined. The yield
strength is the stress that will induce a specified permanent set (i.e., plastic deformation) in the
material, usually 0.05% or 0.2%. (Note: A permanent set of 0.2% is another way of expressing
a strain value of 0,002 in./in., or 0.002 mm/mm.) To determine the yield strength from the
stress—strain diagram, mark a point on the strain axis at the specified permanent set (Figure
3.9). Through this point, draw a line that is parallel to the initial elastic modulus line. The stress
at which the offset line intersects the stress—strain diagram is termed the yield strength.

Strain Hardening and Ultimate Strength

After yielding has taken place, most materials can withstand additional stress before
fracturing. The stress—strain curve rises continuously toward a peak stress value, which is
termed the ultimate strength. The ultimate strength may also be called the tensile strength
or the ultimate tensile strength (UTS). The rise in the curve is called strain hardening. The
strain-hardening regions and the ultimate strength points for a low-carbon steel and an
aluminum alloy are indicated on the stress—strain diagrams in Figure 34.

Necking

In the yield and strain-hardening regions, the cross-sectional area of the specimen
decreases uniformly and permanently. Once the specimen reaches the ultimate strength,
however, the change in the specimen cross-sectional area is no longer uniform
throughout the gage length. The cross-sectional area begins to decrease in a localized
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region of the specimen, forming a contraction, or “neck.” This behavior is referred to
as necking (Figure 3.10 and Figure 3.11). Necking occurs in ductile materials, but not
in brittle materials. (See discussion of ductility, to follow.)

Fracture

Many ductile materials break in what is termed a cup-and-cone fracture (Figure 3.12). In
the region of maximum necking, a circular fracture surface forms at an angle of roughly
45° with respect to the tensile axis. This failure surface appears as a cup on one portion of
the broken specimen and as a cone on the other portion. In contrast, brittle materials often
fracture on a flat surface that is oriented perpendicular to the tensile axis. The stress at
which the specimen breaks into two pieces is called the fracture stress. Examine the re-
lationship between the ultimate strength and the fracture stress in Figure 3.4. Does it
seem odd that the fracture stress is less than the ultimate strength? If the specimen did not

Jeffery S. Thomas
Jeffery S. Thomas

FIGURE 3.11 Neckingina FIGURE 3.12 Cup-and-cone failure surfaces.
ductile metal specimen.
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break at the ultimate strength, why would it break at a lower stress? Recall that the normal
stress in the specimen was computed by dividing the specimen load by the original cross-
sectional area. This method of calculating stresses is known as engineering stress. Engi-
neering stress does not take into account any changes in the specimen’s cross-sectional area
during application of the Joad. After the ultimate strength is reached, the specimen starts to
neck. As contraction within the localized neck region grows more pronounced, the cross-
sectional area decreases continually. The engineering stress calculations, however, are
based on the original specimen cross-sectional area. Consequently, the engineering stress
computed at fracture and shown on the stress—strain diagram is not an accurate reflection
of the true stress in the material. If one were to measure the diameter of the specimen dur-
ing the tension test and compute the true stress according to the reduced diameter, one would
find that the true stress continues to increase above the ultimate strength (Figure 3.13).

Ductility

Strength and stiffness are not the only properties of interest to a design engineer. Another im-
portant property is ductility. Ductility describes the material’s capacity for plastic deformation.

A material that can withstand large strains before fracture is called a ductile material.
Materials that exhibit little or no yielding before fracture are called brittle materials.
Ductility is not necessarily related to strength. Two materials could have exactly the same
strength, but very different strains at fracture (Figure 3.14).

Often, increased material strength is achieved at the cost of reduced duectility. In
Figure 3.15, stress—strain curves for four different types of steel are compared. All four curves
branch from the same elastic modulus line; therefore, each of the steels has the same stiffness.
The steels range from a brittle steel (1) to a ductile steel (4). Steel (1) represents a hard tool
steel, which exhibits no plastic deformation before fracture. Steel (4) is typical of low-carbon
steel, which exhibits extensive plastic deformation before fracture. Of these steels, steel (1)1is
the strongest, but also the least ductile. Steel (4) is the weakest, but also the most ductile.

For the engineer, ductility is important in that it indicates the extent to which a metal can
be deformed without fracture in metalworking operations such as bending, rolling, forming,
drawing, and extruding. In fabricated structures and machine components, ductility also gives
an indication of the material’s ability to deform at holes, notches, fillets, grooves, and other
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discontinuities that cause stresses to intensify locally. Plastic deformation in a ductile material
allows stress to flow to a larger region around discontinuities. This redistribution of stress
minimizes peak stress magnitudes and helps to prevent fracture in the component. Since
ductile materials stretch greatly before fracturing, excessive component deformations in
buildings, bridges, and other structures can warn of impending failure, providing opportuni-
ties for safe exit from the structure and allowing for repairs. Brittle materials exhibit sudden
failure with little or no warning. Ductile materials also give the structure some capacity to
absorb and redistribute the effects of extreme load events such as earthquakes.

Ductility Measures. Two measures of ductility are obtained from the tension test. The
first is the engineering strain at fracture. To determine this measure, the two halves of the
broken specimen are fitted together, the final gage length is measured, and then the average
strain is calculated from the initial and final gage lengths. This value is usually expressed
as a percentage, and it is referred to as the percent elongation.

Stress

Strain
FIGURE 3.15 Trade-off between strength and ductility for steels.



The second measure is the reduction in area at the fracture surface. This value is also ex-
pressed as a percentage and is referred to as the percent reduction of area. Itis calculated as

(3.3)

. Ay - A
Percent reduction of area = T (100%)

where A, = original cross-sectional area of the specimen and Ay = cross-sectional area on
the fracture surface of the specimen.

Review of Significant Features

The stress—strain diagram provides essential engineering design information that is
applicable to components of any shape or size. While each material has its particular
characteristics, several important features are found on stress—strain diagrams for
materials commonly used in engineering applications. These features are summarized in
Figure 3.16.
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g =FEe

where E is the elastic modulus.
Hooke’s law also applies to shear stress 7 and shear strain 4!

where G is called the shear modulus or the modulus of rigidity|

), Hooke’s law is written

(3.4)

(3.5)

A material loaded in one direction will undergo strains perpendicylar to the direction of the

load as well as parallel to it. In other words,

® Ifasolid body is subjected to an axial tension, it contracts in
® If asolid body is compressed, it expands in the lateral direci
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This phenomenon is illustrated in Figure 3.17, where the deformat
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i defined as follows:

(3.6)

(i.e., simple tension or
¢ the lateral and longitu-

dinal strains are always of opposite signs for uniaxial stress (i.e., if|one strain is elongation,

the other strain is confraction).




between 1/4 and 1/3. Beci

Values vary for different materials, but for most metals, Poisson’s ratio has a value

possible value for Poisson’
for materials such as rubber.

Relationship Between E, G, and v

Poisson’s ratio is related t

wuse the volume of material must remain constant, the largest
: ratio is 0.5. Values approaching this upper limit are found only

| the elastic modulus E and the shear modulus G by the formula
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POISSON'S RATIO

The Poisson effect exhibited by
materials causes no additional
stresses in the lateral direction
unless the transverse deformation
is inhibited or prevented in some
manner.

A tension test was condficted on a 1.975 in. wide by 0.375 in. thick specimen of a nylon
plastic. A 4.000 in. gagp length was marked on the specimen before application of the
load. In the elastic portign of the stress—strain curve at an applied load of P=6,0001Ib, the
elongation in the gage lgngth was measured as 0.023 in. and the contraction in the width

of the bar was measured as 0.004 in. Determine

(a) the elastic modulus |F.
(b) Poisson’s ratio V.
(c) the shear modulus (.

Plan the Solution

(a) From the load and j}he initial measured dimensions of the bar, the normal stress can

be computed. The 1

ormal strain in the longitudinal (i.e., axial) direction, €gpg, Can

be computed from {he elongation in the gage length and the initial gage length. With

these two quantities, the elastic modulus E can be calculated from Equation (3.4).
(b) From the contracti¢n in the width and the initial width of the bar, the strain in the

lateral (i.e., transvejrse) direction, £y, can be computed. Poisson’s ratio can then be

found from Equation (3.6).
(¢) The shear modulus|can be calculated from Equation (3.7).

SOLUTION
(a) The normal stress in the plastic specimen is
0
o= 6 B0 1h — = 8,101.27 psi
(1.975 in.)(0.375 in.)
The longitudinal s{rain is
g = U220 _ ,005750 in.fin.
4.000 in.

Therefore, the elagtic modulus is

LT 8,101.27 psi
~ ¢ [ 0.005750 in.fin.

L_SDLATPSU 408 916 psi = 1,409,000 psi

Ans.




(b) The lateral strain is

—0.004 in.
1.975 in.

lat. —

= —0.002025 in./in.

From Equation (3.6), Poisson’s ratio can be computed as

: 25 in./in.
p= i SOl o Ans.
Eisng 0.005750 in./in,
(c) The shear modulus is then computed from Equation (3.7) as
- R psi Ans.

T21+v) | 20+ 0352)
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Rigid bar ABC is supported by a pin
by 6 mm thick aluminum [E = 70 G
v =0.33] alloy bar at B. A strain gage
the aluminum bar is used to measur.
Before load P is applied to the rigid
measures zero longitudinal strain at
of 20°C. After load P is applied to th
temperature drops to —10°C, a longitu
is measured in the aluminum bar. De

100 mm
raci ALl

@ Strain
g . gage

(a) the stress in member (1),

1.0m (b) the magnitude of load P.

itA and a 100 mm wide
Pa; or = 22.5 x 10-5/°C;
affixed to the surface of
: its longitudinal strain.
var at C, the strain gage
11 ambient temperature
e rigid bar at C and the
dinal strain of 2,400 e
ermine

(¢) the change in the width of the aliminum bar (i.e., the

100 mm dimension).

Plan the Solution
This problem illustrates some misconceptions that are common i
and Poisson’s ratio, particularly when temperature change is a fac

SOLUTION
(a) Since the elastic modulus £ and the longitudinal strain & are g
one might be tempted to compute the normal stress in alumini

1,000 MPa 1 mm/mr

applying Hooke’s law
ror in the analysis.

ven in the problem,
im bar (1) from

p=

Hooke’s law [Equation (3.4)]:

This calculation is not correct for the normal stress in member (

o) = Ejg = (70 GPa)(2,400 us)[

1 GPa 1,000,000

From Equation (2.7), the total strain &, in an object includ
stress and a portion £ due to temperature change. The strain g
(1) has measured the total strain in the aluminum bar as Eiota 7
mm/mm. In this problem, however, the temperature of membej

] = 168 MPa
ue

[). Why is it incorrect?

25 a portion £, due to
age affixed to member
= 2,400 pe = 0.002400
(1) has dropped 30°C




before the strain measfirement. From Equation (2.6), the strain caused by the tempera-
ture change in the aluninum bar is

gr = o AT = (225X 1076/°C)(=30°C) = —0.000675 mm/mm
Hence, the strain cauded by normal stress in member (1) is
Eiotal = €6 T Er

5 €y = Eg T €r = 0.002400 mm/mm — (-0.000675 mm/mm)
= 0.003075 mm/mm

Using this strain valjie, we can now compute the normal stress in member (1) from
Hooke’s law:

o, = Ee = (70 (§Pa)(0.003075 mm/mm) = 215.25 MPa = 215 MPa Ans.
(b) The axial force in member (1) is computed from the normal stress and the bar area:

F, = 0,4, [= (215.25 N/mm*)(100 mm)(6 mm) = 129,150 N

Now write an equilibrium equation for the sum of moments about joint A, and solve
for load P:

sM, = (1.5 m)(129,150 N) — (2.5 m)P = 0
- P=77,490 N = 77.5kN Ans.

(¢) The change in the width of the bar is computed by multiplying the lateral (i.e., trans-
verse) strain £ by|the 100 mm initial width. To determine &, the definition of
Poisson’s ratio [Equation (3.6)] is used:

_ Erar

¥ = S E = ‘Vslong

glong

Using the given valjie of Poisson’s ratio and the measured strain, we could calculate

Eyt A8
£l = —VEiong = —(0.33)(2,400 pe) = ~792 pe

This calculation iy not correct for the lateral strain in member (1). Why is it
incorrect?

The Poisson effect qpplies only to strains caused by stresses (i.e., mechanical effects).
When they are unr¢strained, homogeneous, isotropic materials expand uniformly in
all directions as thely are heated (and contract uniformly as they cool). Consequently,
thermal strains shofild not be included in the calculation of Poisson’s ratio. For this
problem, the lateral| strain should be calculated as

£ = —(0.33)(0.0p3075 mm/mm) + (—0.000675 mm/mm} = —0.0016898 mm/mm

The change in the idth of the aluminum bar is, therefore,

Syuan = (—0.0016898 mm/mm)(100 mm) = —0.1690 mm Ans.




Two blocks of rubber, each 80 mm 1
20 mm thick, are bonded to a rigid sup
able plate (1). When a force P = 2,80
sembly, plate (1) deflects 8 mm hori
shear modulus G of the rubber used fo

mg by 40 mm wide by
ort mount and to a mov-
N is applied to the as-
zrontally. Determine the
- the blocks.

Plan the Solution

Hooke’s law [Equation (3.5)] expresses
shear stress and shear strain. The shear
from the applied load P and the area
contact the movable plate (1). Shear strz
that can be determined from the horizon
and the thickness of the rubber blocks.
computed by dividing the shear stress by

the relationship between
stress can be determined
f the rubber blocks that
in is an angular measure
al deflection of plate (1)
The shear modulus G is
the shear strain.

SOLUTION
Consider a free-body diagram of mpvable plate (1). Each
rubber block provides a shear force that opposes the applied
load P. From a consideration of equilitjrium, the sum of forces
in the horizontal direction is

IF, =2V - P =|0

~ V= P/2 = (2,800 N)/2

Next, consider a free-body diagram of tl
its deflected position. The shear force Vi

80 mm long and 40 mm wide. There
stress in the rubber block is

1,400 N

=~ FOmmy a0 mm)

The 8 mm horizontal deflection cause
shown. The angle ¥ (measured in radiar

= 1,400 N
e upper rubber block in

acts on a surface that is
‘ore, the average shear

4375 MPa

i the block to skew as
s) is the shear strain:

0.3805 rad

The shear stress 7, the shear modulus G, and the shear st
Hooke’s law:

‘ain y are related by

T=0Gy
Therefore, the shear modulus of the rubber used for the blocks is

T 04375 MPa

v 0.3805 rad

=1.150 MPa

Ans.




B MecMovies

EXERCISE
M3.1 Figure M3.1 depicts ljasic problems requiring the use of Pi

Hooke’s law.

550 m

FIGURE M3.1
PROBLEMS

P3.1 At the proportional Ijmit, a 2 in. gage length of a 0.500 in. (a) the modulus of elasticity.
diameter alloy rod has elongated 0.0035 in. and the diameter has (b) Poisson’s ratio.

been reduced by 0.0003 in. The total tension force on the rod was (c) the change in the bar width b.
5.45 kips. Determine the follpwing properties of the material:

P3.4 A 0.625 in. thick rectangular alloy bar is subjected to a

(a) the proportional 1im%t._ tensile load P by pins at A and B as shown in Figure P3.4. The
(b) the. modulus _Of clasticity width of the bar is w = 2.00 in. Strain gages bonded to the specimen
(c) Poisson’s ratio. measure the following strains in the lengitudinal (x) and transverse

P3.2 A solid circular rod With a diameter 4 = 16 mm is shown in (y) directions: &, = 1,140 pe and £, = =315 pe.

Figure P3.2. The rod is mafle of an aluminum alloy that has an () Determine Poisson’s ratio for this specimen.
elastic modulus E = 72 GPaland a Poisson’s ratio v = 0.33. When () If the measured strains were produced by an axial load P =

subjected to the axial load F| the diameter of the rod decreases by 17.4 kips, what is the modulus of elasticity for this specimen?
0.024 mm. Determine the mjgnitude of load P.
d

» | r

FIGURE P3.2
P3.3 The polymer bar EIGURE P3.4
shown in Figure P3.3 has a
width b = 50 mm, a depth
d = 100 mm, and a height
A =270 mm. At a compres- I P3.5 A 40 mm by 40 mm square ABCD (ie., a = 40 mm) is
sive Joad P = 135 kN, the M drawn on a rectangular bar prior to loading. (See Figure P3.5a). A
bar height contracts by A= uniform normal stress o = 54 MPa is then applied to the ends of the
—2.50 mm and the bar depth rectangular bar, and square ABCD is deformed into the shape of a

rhombus, as shown in the Figure P3.5h. The dimensions of the
At this load, the stress in the rthombus after loading are b = 56.88 mm and ¢ = 55.61 mm. Deter-
polymer bar is less than ity mine the modulus of elasticity for the material. Assume that the
proportional limit. Determine FIGURE P3.3 material behaves elastically for the applied stress.

elongates by Ad=10.38 mm.
Rigid base




Initial square drawn on bar before loading.

FIGURE P3.5a

Rhombus after bar is loaded by stress o.

FIGURE P3.5b

P3.6 A nylon [E = 2,500 MPa; v = 0.4] bar is subjected to an
axial load that produces a normal stress . Before the load is
applied, a line having a slope of 3:2 (i.e., 1.5) is marked on the
bar as shown in Figure P3.6. Determine the slope of the line
when ¢ = 105 MPa.

b —
o 5 o
FIGURE P3.6

P3.7 A nylon [E = 360 ksi; v = 0.4] rod (1) having a diameter
d; =2.00 in. is placed inside a steel [E = 29,000 ksi; v = 0.29] tube
(2) as shown in Figure P3.7. The inside diameter of the tube is dy =
2.02 in. An external load P is applied to the rod, compressing it. At
what value of P will the space between the rod and the tube be
closed?

Nylon rod (1)

P

Steel tube (2)
FIGURE P3.7

P3.8 A metal specimen with an original diameter of 0.500 in.
and a gage length of 2.000 in. is tested in tension until fracture oc-
curs. At the point of fracture, the diameter of the specimen is 0.260
in. and the fractured gage length is 3.08 in. Calculate the ductility
in terms of percent elongation and percent reduction in area.

P3.9 A portion of the stress—strain curve for a stainless steel al-
loy is shown in Figure P3.9. A 350 mm long bar is loaded in tension
until it elongates 2.0 mm, and then the load is removed.

(a) What is the permanent set in thjt bar?
(b) What is the length of the unloadled bar?
(c) If the bar is reloaded, what will|be the proportional limit?
640 [
| 1
480 - g
- | —1 |
& i
= |
2 /
- 320 S
3 i
&
160 - ;
i 1
0 T T T
0 0.002 0.004 0.006 0.008 0.010
Strain (1um/mm)
FIGURE P3.9
P3.10 A plastic block is bonded ti a fixed base and to a hori-

zontal rigid plate as shown in Figurq
of the plastic is G = 45,000 psi, and ty
4.0in.,5=2.0in., and ¢ = 1.50 in. A
is applied to the plate. Determine the|
plate. ‘

Rigid plate

Fixed base

FIGURE P3.10

P3.10. The shear modulus
e block dimensions are a =
orizontal force P = 8,500 Ib
horizontal deflection of the

P3.11 A 0.5 in. thick o
plastic panel is bonded to A
the  pin-jointed  steel
frame shown in Figure
P3.11. Assume that a =
40ft, b=6.0ft, and G =
70,000 psi for the plastic,
and determine the magni-
tude of the force P that
would displace bar AB to
the right by 0.8 in. Neglect the deformj

FIGURE |

P3.12 The complete stress—strain di
less steel alloy is shown in Figure P3
been enlarged in Figure P3.124/13b
linear portion of the stress-strain diag

Plastic
panel

13.11

|
]ftion of the steel frame.

igram for a particular stain-
12a/13a. This diagram has
0 show in more detail the
am. A rod made from this




material is initially 800 mm ljng at a temperature of 20°C. Aftera  (a) the modulus of elasticity.

tension force is applied to thejrod and the temperature is increased  (b) the proportional limit.

by 200°C, the length of the rafd is 304 mm. Determine the stress in (¢) the yield strength (0.20% offset).

the rod, and state whether the elongation in the rod is elastic or  (d) the ultimate strength.

inelastic. Assume the coeffiffient of thermal expansion for this (e) the fracture stress.

material is 18 x 10°/°C. (f) the true fracture stress if the final diameter of the specimen at
the location of the fracture was 0.387 in.

160 1 =T
\ Change in Change in
120 Load (Ib) Length (in.) Load (Ib)  Length (in.)
= L 0 0 14,690 0.0149
< ] 1,221 0.0012 14,744 0.0150
g 8 I 2,479 0.0024 15,119 0.0159
A - 3,667 0.0035 15,490 0.0202
i i 4,903 0.0048 15,710 0.0288
L 6,138 0.0060 16,032 0.0581
- 7,356 0.0072 16,295 0.0895
|| Complete stress-strain diagram. 8,396 0.0085 16,456 0.1214
o ot 00s0 0100 0.130 9,783 0.0096 16,585 0.1496
Strain (in./in.) 11,050 0.0110 16,601 0.1817
FIGURE P3.12a/13a 12,247 0.0122 16,601 02278
13,434 0.0134 16,489 0.2605
120 = T 16,480 fracture
i
~ 80 | I ~ P3.15 A Grade 2 Titanium tension test specimen has a diameter
) . /‘ al ' - of 12.60 mm and a gage length of 50 mm. In a test to fracture, the
5 1 / : [ st{ess and strai_n data shown in the accompanying table were ob-
& 40 | tained. Determine
] I S . | (a) the modulus of elasticity.
i Enif frgtoslmem of the‘lmée_ar p.ort:on i (b) the proportional limit.
— L e () the yield strength (0.20% offset).
0.0 0.002 || 0.004 0.006 0.008 0.010 (d) the ultimate strength.
Strain (in./in.) (e) the fracture stress.
FIGURE P3.12b/13p (f) the true fracture stress if the final diameter of the specimen at

the location of the fracture was 9.77 mm.
P3.13 A tensile test speftimen of stainless steel alloy having a

diameter of 12.6 mm and { gage length of 50 mm was tested to — :
fracture. The complete strefs—strain diagram for this specimen is Change in : Change in
shown in Figure P3.12a/13a. This diagram has been enlarged in Load (kN)  Length (mm) | Load (kN) Length (mm)
Figure P3.12b‘f‘ 13b to showifin more detail the linear portion of the 0.00 0.000 527 4' 0.314
stress-strain diagram. Deternine 4.49 0.017 56.95 0.480
(a) the modulus of elasticify. 8.84 0.032 60.76 0.840
(b) the propertional limit. 13.29 0.050 63.96 1.334
(¢) the ultimate strength. 17.57 0.064 66.61 1.908
(d) the yield strength (0.2(}% offset). 22.10 0.085 68.26 2.562
(e) the fracture stress. 26.46 0.103 69.08 3.217
(f) the true fracture stress||f the final diameter of the specimen at 30.84 0r123 69.41 3.938

the location of the fracjure was 8.89 mm. 35.18 0.144 69.39 4.6606

. ; . ) 39.70 0.171 69.25 5202

P3.14 A 7075-T651 aluminum alloy specimen with a diameter 43.95 0.201 68.82 6.023
of 0.500 in. and a 2.0 in. glage length was tested to fracture. Load 48.44 0.241 68.35 6.731
and deformation data obtajned during the test are given in the ac- 68.17 fracture

companying table. Determjne




P3.16 Compound axial member ABC shown in Figure P3.16 has
a uniform diameter ¢ = 1.50 in. Segment (1) is an aluminum [E; =
10,000 ksi] alloy rod with length L; =90 in. Segment (2) is a copper
[£; = 17,000 ksi] alloy rod with length L, = 130 in. When axial
force P is applied, a strain gage attached to copper segment (2)
measures a normal strain of &, = 2,100 in.fin. in the longitudinal
direction. What is the total elongation of member ABC?

Aluminum

FIGURE P3.16

P3.17 Analuminum alloy [E= i L

70 GPa; v = 0.33; o = 23.0 x

107%/°C] plate is subjected to & p FEEETTETTDTT
tensile load P as shown in Figure @2 Id

P3.17. The plate has a depth d = v —
260 mm, a cross-sectional area

A=6,500 mm?, and a length L= FIGURE P3.17

4.5 m. The initial longitudinal

normal strain in the plate is zero. After load P is applied and the
temperature of the plate has been increased by AT = 56°C, the lon-
gitudinal normal strain in the plate is found to be 2,950 JLE.
Determine

(a) the magnitude of load P.
(b) the change Ad in plate depth.

P3.18 The rigid plate in Figure P3.18 is supported by bar (1)
and by a double-shear pin connection at B. Bar (1) has a length
L, =60 in., a cross-sectional area A; = 0.47 in.2, an elastic modulus
E =10,000 ksi, and a coefficient of thermal expansion of o = 13 x
10-%/°F. The pin at B has a diameter of 0.438 in. After load P
has been applied and the temperature of the entire assembly has

been decreased by 30°F, the total strain in bar (1) is measured as
570 ue (elongation). Assume dimensiops of a= 12 in. and b = 20 in.
Determine

(a) the magnitude of load P.
(b) the average shear stress in pin B.

FIGURE P3.18

P3.19 In Figure P3.19, member (|) is an aluminum bar that
has a cross-sectional area A = 1.0f in.2, an elastic modulus
£ = 10,000 ksi, and a coefficient of|thermal expansion of & =
12.5 x 107%/°F. After a load P of unkjiown magnitude is applied
to the structure and the temperature{is increased by 65°F, the
normal strain in bar (1) is measured as —540 pe. Use dimensions
of a=24.61t, b=11.7 ft, and ¢ = 14}) ft. Determine the magni-
tude of load P.

FIGURE P3.19




