Road Vehicle Performance:
Introduction and Resistance

CE 322
Transportation Engineering
Dr. Ahmed Abdel-Rahim

Introduction to Road Vehicle Performance

Roadway design is governed by:
- Vehicle capabilities
 - acceleration/deceleration
 - braking
 - cornering (chap. 3)
- Human capabilities (late chap. 2, chap. 3)
 - perception/reaction times
 - eyesight (peripheral range, height above roadway)

Introduction to Road Vehicle Performance

Basis for roadway design guidelines:
- length of acceleration / deceleration lanes
- maximum grades
- stopping-sight distances
- passing-sight distances
- setting speed limits
- timing of signalized intersections
How does performance affect max grades?

Introduction

Studying vehicle performance serves two important purposes:
1. insight into
 1. roadway design
 2. traffic operations and
 3. compromises
2. basis to assess impact of advancing vehicle technologies on design guidelines
Tractive Effort and Resistance
- Opposing forces determining straight-line performance
- Tractive effort = force available to perform work
- Resistance = force impeding vehicle motion

Tractive Effort and Resistance
- Major sources of vehicle resistance:
 - Aerodynamic
 - Rolling (originates from the roadway surface/tire interface)
 - Grade or gravitational

Tractive Effort and Resistance
- Illustration of forces with vehicle force diagram

Aerodynamic Resistance
- Effect of speed?
- Sources:
 - Turbulent air flow around vehicle body ($\approx 85\%$)
 - Friction of air passing over vehicle body ($\approx 12\%$)
 - Air flow through vehicle components ($\approx 3\%$)
Aerodynamic Resistance

- Aerodynamic resistance force equation:

\[R_a = \frac{\rho}{2} C_D A_f V^2 \]

(Eq. 2.3)

- Air density properties (Table 2.1):
 - \(\uparrow \) altitude, \(\downarrow \) density
 - \(\uparrow \) temperature, \(\downarrow \) density

- Drag coefficient accounts for all 3 sources
- Road vehicle drag coefficients \(\rightarrow \) Table 2.2 (for different types)
- Drag coefficients trend \(\rightarrow \) Table 2.3 (past 35 years)
 - What is the trend?
 - What impact could this have on roadway design?

- How sensitive is \(R_a \) to speed?
- Let’s develop a relationship for how much power is needed to overcome \(R_a \).
Aerodynamic Resistance

- Power is the product of force and speed, so multiplying Eq. 2.3 by speed gives:
 \[P_x = \frac{\rho}{2} C_{rA} A V^3 \]
 \[\text{(Eq. 2.4)} \]

- or, since 1 horsepower = 550 ft-lb/sec,
 \[hp_x = \frac{\rho C_{rA} A V^3}{1100} \]
 \[\text{Sensitivity of power to speed...} \]

Rolling Resistance \((R_{rl})\)

- Source
 - vehicle's internal mechanical friction
 - Pneumatic tires and interaction with the roadway.
 - Tire deformation (≈90%)
 - Tire slippage and air circulation around tire & wheel (about 6%)
 - Tire penetration/surface compression (about 4%)

- Factors affecting \(R_{rl}\)
 - Rigidity of tire and roadway surface
 - Tire inflation pressure and temperature
 - Vehicle speed

- Approximated as product of a friction term (coefficient of rolling resistance) and vehicle weight.

- Coefficient of rolling resistance \((f_{rl})\) on paved surfaces
 \[f_{rl} = 0.01 \left(1 + \frac{V}{147}\right) \quad \text{with } V \text{ in ft/s} \]
 \[\text{(Eq. 2.5)} \]

 \[f_{rl} = 0.01 \left(1 + \frac{V}{44.73}\right) \quad \text{with } V \text{ in m/s} \]
Rolling Resistance (R_{rl})

- Rolling resistance approximation:
 \[R_{rl} = f_{rl}W \cos \theta \]
- For a 10% grade, what is the cosine term?
 \[R_{rl} = f_{rl}W \]

(Eq. 2.6)

Grade Resistance (R_g)

- What is the grade resistance to vehicle motion?

\[R_g = W \sin \theta_g \]
\[\sin \theta_g \approx \tan \theta_g \]
\[R_g \approx WG \]

(Eq. 2.9)