

CASE STUDY \#2

Abbi Johnson \& Ashley O'Byrne

Building Description

\square The Ale House is located at 226 W 6 ${ }^{\text {th }}$ St. Moscow ID, 83843
\square A small restaurant with standing tables, booths, bar and an outdoor patio space.
\square Space has a large parking lot made of gravel
\square Open from Mon.-Sun. 11 am -10pm
\square Average occupancy 120 people

Current Rainfall

Normal Precipitation

(MOSCOW U OF I Weather station, 1.63 miles from Moscow)

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
Inch	2.99	2.52	2.57	2.52	2.62	1.87	1.12	1.19	1.28	2.01	3.54	3.14	27.37

Averages:

Temperature: $36.5^{\circ} \mathrm{F}$
High Temp. (July): $83^{\circ} \mathrm{F}$
Average Low Temp. (January): $22.5^{\circ} \mathrm{F}$
Dew Point: $31^{\circ} \mathrm{F}$
Humidity: 31\%
Rainfall: 27.37 in.
Snowfall: 49.5in

Water Using Fixture Inventory

FIXTURE	$\#$	OUTFLOW WATER QUALITY / RECYCLABLE?
Lavatory	4	Grey Water / Y
Urinal	1	Black Water / N
Toilet	3	Black Water / N
Dishwasher	1	Grey Water / Y
Kitchen Sink	6	Grey Water / Y

WATER USE ESTIMATE

SPACE	PER CAPITA USE (G/D)	\# PEOPLE
Restaurant $w /$ toilet facilities (per patron)	$7-10$	120

Total Gallons Per Day Used: 1200 (WU)

Conventional Water Supply

GPFU $=(W U / F U)$

1200/73.4 = 16.35 WU/FU
Found on MEEB 991 Table 21.15

FIXTURE	\#	COLD	HOT	WSFU	TOTAL FU
Lavatory	4	1.5	1.5	2	8 (FU)
Urinal	1	10	0	10	10 (FU)
Toilets	3	10	0	10	10 (FU)
Dishwasher	1	0	1.4	1.4	1.4 (FU)
Kitchen Sinks	6	3	3	4	24 (FU)
					TOTAL: 73.4 (FU)

Conventional Supply Fixtures Estimates

FIXURE	TOTAL F(U)	GPF
Lavatory	8 FU	130.8
Urinal	10 FU	163.5
Toilets	30 FU	490.5
Dishwasher	1.4 FU	22.89
Kitchen Sinks	24 FU	392.4
		TOTAL SUPPLY: $\mathbf{1 2 0 0 . 0 9}$

$$
(G P F)=G P F U \times F U
$$

GPF = Gallons/day/supply fixture
GPFU = gallons/day/supply fixture unit
FU = weight in supply fixture

HOT WATER 273.1 GALLONS

How Does The AleHouse Conserve

Water?

\square NO!!!!
\square The AleHouse utilizes all conventional fixtures. The bathroom includes standard toilets, sinks and urinals.
\square They use the bare minimum to meet code.

Storm Water Analysis

How Does the AleHouse Deal With Storm Water?

\square NO!!!!
\square The AleHouse parking lot doesn't have any drainage system to deal with storm water other than gravel.
\square The gravel cant suffice storm water for the whole parking lot - cause for the water gathering area.

How Can We Improve It?

\square Creating bio-swales around the perimeter of the parking lot
\square Slant the parking lot so storm water is directed into a antiquate drainage system that goes to a sewer
\square Create a mini storm water retention pond where the current water gathering area is.
\square Using the gravel but adding a porous asphalt pavement under - distributing storm water into the ground.

Water Conservation Re-Design

FIXTURE	$\#$	WSFU	TOTAL (FU)
Toilets - Dual Flush (Supplied by Cistern)	3	0	0
Waterless Urinal	1	0	0
Restroom Motion Sinks	4	0.7	2.8
Kitchen Sinks	6	4	24
Dishwasher	1	1.4	1.4
	Previous		
Total: 73.4			

Fixture	Total (FU)	GPF
Toilet - Dual Flush (Supplied by Cistern	0	0
Waterless Urinal	0	0
Restroom Motion Sinks	2.8	78.4
Kitchen Sinks	24	672
Dishwasher	1.4	39.48
	Previous Total: 1200.09	Total: 789.88

411.02 Gallons Savings

ReDesign Diagram

Storm Water Redesign

Cistern Sizing

2,576 SF $\times .6$ gallons $=1,545.6$ gallons $/ \mathrm{SF}$
$1,545.6 \times 27.08 \mathrm{in}$. Rain Annually $=41,854.8 \mathrm{~g}$
You can only harvest 75% of water. The first 25% is tainted.
$41,854.8 \times .75 \%=$
31,391.1 collects gallons annually
1 ft cubed $=7.48$ gal (found in Green Studio pg. 284).
Therefore...
31,391.1 gallons annually $/ 7.48=4,196.7$ Cubed ft Cistern

We would need to install a $20 \times 20 \times 11$ Cistern to hold this amount of water!

Cistern would provide water for dual-flush toilets and vegetation watering during summer months.

Conclusion

\square Currently the Alehouse utilizes all standard fixtures.
\square Our redesign, effectively saves about 702.4 Gallons per Day with:

- Dual-Flush Toilet
- Cistern
- Motion Sensor Sinks
\square Bio-swales
\square Porous Asphalt
\square Retention pond
- "Green street" - lined with deck- (bio-swale?)

