CASE STUDY #3 "A SUSTAINABLE SITE & BUILDING"

Macy Brannan, Kiana Fannin, & Chase Muchow

MCALLEN MAIN LIBRARY

- ► Located in McAllen, TX
- ► Architects: MSR Design
- ► 120,000 sq. ft.
- ► Completed in 2011
- ► Largest single story library in the US
- ► Awards:
 - AIA Honor Award for Interior Architecture
 - ALA/IIDA Library Interior Design Awards: Best Overall
 - Best Category (Public Libraries over 30,000 sq. ft.)
 - AIA Minnesota Honor Award
 - IIDA Northland Chapter FAB Award

+

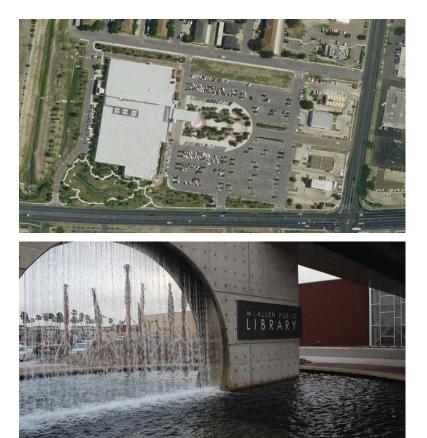
2 1/4 Football Fields

+

Walmart

SUSTAINABLE FEATURES ADAPTIVE REUSE

Abandoned 1980's Walmart


Working with the **existing structure** instead of tearing it down & sending it to a landfill

Relocation of the library to this location proved to be a substantially great **investment** & boosted local commerce

In the first month, library cards increased **23x** that of the same month from the previous year & account updates increased by **2,000%**

"...the greenest building is one that already exists..."

- archdaily on the McAllen Main Library

SUSTAINABLE FEATURES WATER

Addition of **green space** within site reduces the impervious area from 90% to 67%

Stormwater system minimizes stream velocities, erosion, & discharge into the city storm sewer system

High efficiency fixtures inside (e.g., dual-flush toilets & low-flow faucets) result in potable & wastewater **savings** in excess of **40%**

Condensate recovery system collects & pumps water to the **cooling towers** at the central plant, saving an additional estimated **180,000 gal/year**

SUSTAINABLE FEATURES MATERIALS

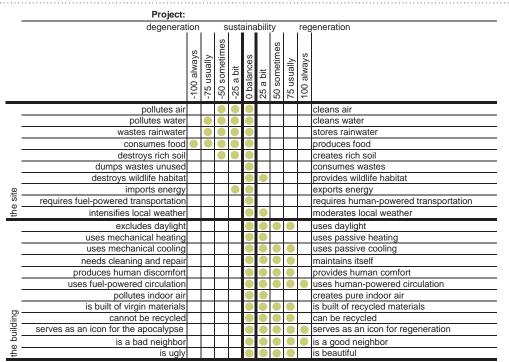
Building, finishes, & furnishings were selected to **keep materials** & **toxins out** of the **waste stream**

Low VOC paints, glue-free adhesive carpet tiles

Carpet tiles cover **75%** of floor area, contain between **60-80% recycled** context, which are durable, easy to maintain, easy to replace, & **recyclable**

Furnishings chosen for their **highly recycled context** & r**ecyclability** (e.g. study chairs contain 80% recycled aluminum, 100% recyclable, others made from 111 recycled plastic bottles per chair

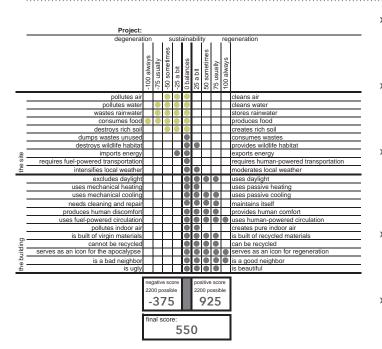
SUSTAINABLE FEATURES ENERGY


Designed in accordance with the **Advanced Energy Design Guide** to achieve a minimum **30% energy savings**

Equipment technologies include the most efficient chillers on the market with VFDs & frictionless magnetic bearings

Building automation systems optimize conservation by tracking performance, monitoring usage trends, & minimizing wasteful operation

Lighting typically accounts for **40%-55%** of total energy consumption, so the design team incorporated daylight harvesting, LED systems, & occupancy sensors


MALCOLM WELLS' CHECKLIST

Not good for the site...

negative score 2200 possible -375		positive score 2200 possible 925
final score: 5	50)

MALCOLM WELLS' CHECKLIST – THE SITE

≻ Air | -50

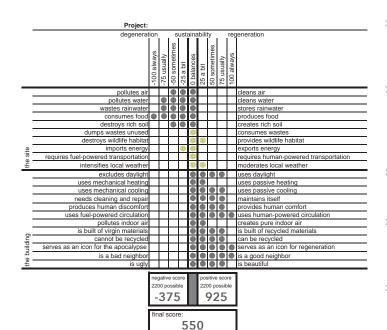
Automobiles & site maintenance pollute air, & insufficient amount of native vegetation to clean air

➤ Water | -75

Lack of collection, retention, & filtering of stormwater runoff from parking lot

► Rainwater | -75

System minimizes stream velocities, erosion, & discharge into city storm sewer system, but does not store rainwater


► Food Production | -100

Small cafe off the main entry, & has to transport in all of it's products, none are produced on site

≻ Soil | -50

Lack of on-site water filtration & redirection leads to erosion, although mitigating this problem has been attempted

MALCOLM WELLS' CHECKLIST - THE SITE

► Wastes | 0

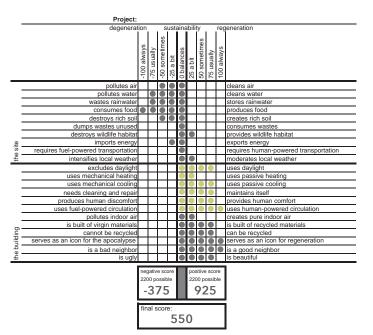
Avoided construction waste, because building is adaptive reuse, & it doesn't deal with on-site waste

➤ Wildlife Habitat | 25

Original building likely destroyed wildlife habitat, but an attempt to provide local vegetation has been made

➤ Energy | -25

Energy is imported for safety & maintenance needs


► Transportation | 0

Located on two major bus routes & is pedestrian & bike friendly, but received a WalkScore of 45

► Local Weather | 25

Water feature east of the building entry could potentially mitigate heat entering the building by providing cool breezes

MALCOLM WELLS' CHECKLIST – THE BUILDING

➤ Daylight | 75

Natural daylighting during the daytime through the use of light shelves & skylights

► Heating | 25

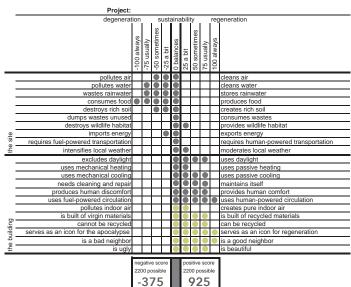
Climate calls for few heating periods

► Cooling | 75

Exterior chill tower is connected to (2) high efficiency chillers within the building, & shading strategies

► Maintenance | 75

Low maintenance AC system, building systems with remote access & control, & durable facade


► User Comfort | 75

Building automation systems track performance for user comfort

Circulation | 100

Single story with a central spine way-finding system

MALCOLM WELLS' CHECKLIST - THE BUILDING

-375 925 iinal score: 550

► Indoor Air Quality | 25

Finishes & furnishings were chosen based on their lack of harmful toxins (e.g. low VOC paints, glue free adhesives for carpet tiles, etc.), unfortunately books emit VOCs

► Materials | 75

Building materials & furnishings chosen based on their recyclability

► Recyclability | 75

Most of the building, materials, & furnishings are recyclable

► Regeneration | 100

The building has proven that it has the ability to adapt already & could adapt again in the future

➤ Neighbor | 100

It provides a positive atmosphere within a community that struggles with violence, & was also a smart financial move

➤ Aesthetics | 75

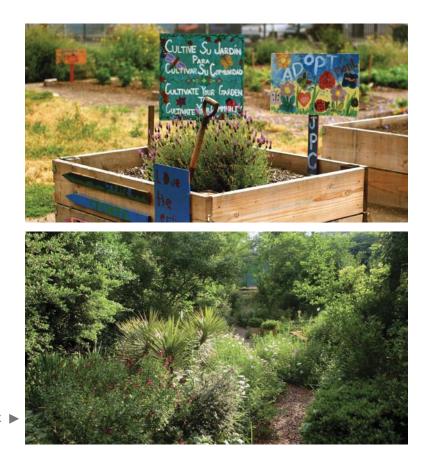
Modern adaptation of an 80's "ghostbox" building & won awards for the interior design

LEED CHECKLIST

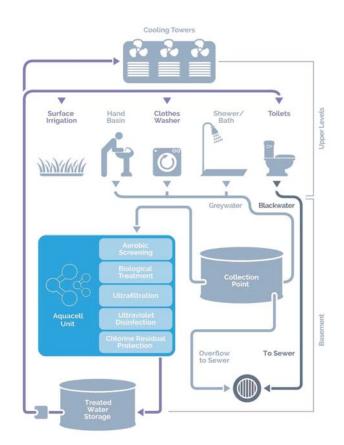
2010/07/08	2009 for New Construction and Major Renovat Checklist	10113				Project N
	nable Sites Possible Point	s: 26			ials and Resources, Continued	
7 N Prereg 1			Y 7	_	Design of the state	
	Construction Activity Pollution Prevention		2	Credit 4	Recycled Content	1 to
Credit 1 Credit 2	Site Selection	1	1	Credit 5	Regional Materials	1 to
	Development Density and Community Connectivity	1	1	Credit 6	Rapidly Renewable Materials	1
	Brownfield Redevelopment		1	Credit /	Certified Wood	1
Credit 4.1 Credit 4.2	Alternative Transportation—Public Transportation Access	6		o Indoo	r Environmental Quality Possible	e Points: 15
O Credit 4.2	Alternative Transportation—Bicycle Storage and Changing Rooms	3	13 0		r Environmental Quality Possible	e Points: 15
	Alternative Transportation—Low-Emitting and Fuel-Efficient Vehicles Alternative Transportation—Parking Capacity	2	Y		Minimum Indoor Air Quality Performance	0
		-	Y	Prereq 1		-
0	Site Development—Protect or Restore Habitat	1	Y	Prereq 2	Environmental Tobacco Smoke (ETS) Control	0
Credit 5.2	Site Development-Maximize Open Space			Credit 1 Credit 2	Outdoor Air Delivery Monitoring	
	Stormwater Design—Quantity Control		1	-	Increased Ventilation	
	Stormwater Design—Quality Control Heat Island Effect—Non-roof			Credit 3.1 Credit 3.2		
	Heat Island Effect—Non-roor Heat Island Effect—Roof	-	0	_		
0 Credit 7.2			1	Credit 4.1 Credit 4.2		
U Credit 8	Light Pollution Reduction		1	Credit 4.3		
	Efficiency Possible Point	s: 10	1	Credit 4.3		4. 1
0 0 Water	Efficiency Possible Point	5: 10	1	Credit 4.4 Credit 5	Indoor Chemical and Pollutant Source Control	15 1
Prereg 1	Water Use Reduction-20% Reduction		1	Credit 6.1		1
Prereq 1 O Credit 1	Water Efficient Landscaping	2 to 4	1	Credit 6.1		
0 Credit 2	Innovative Wastewater Technologies	2 10 4	1	Credit 8.2		1
-	Water Use Reduction	2 to 4	1	Credit 7.2		
Credit 3	water use Reduction	2 to 4	1	Credit 8.1		1
	and Atmosphere Possible Point	s: 35	1	Credit 8.1		1
					the and Decim Decession Decility	Delate (
Prereq 1 Prereq 2	Fundamental Commissioning of Building Energy Systems	0	5 0		ation and Design Process Possible	e Points: 6
-	Minimum Energy Performance Fundamental Refrigerant Management	U	1	Credit 1.1	Innovation in Design: Specific Title	1
Prereq 3 Credit 1		1 to 19	1	Credit 1.1 Credit 1.2		
0 Credit 2	Optimize Energy Performance On-Site Renewable Energy	1 to 19	1	Credit 1.2 Credit 1.3		1
O Credit 2	Enhanced Commissioning	2	1	Credit 1.3		
Credit 4	Enhanced Refrigerant Management	2	1	Credit 1.5		1
0 Credit 5	Measurement and Verification	2	0	Credit 1.5	LEED Accredited Professional	1
0 Credit 6	Green Power	2		Credit 2	LEED ACCIEDITED Professional	
Credit 8	Green rower	2		0 Pogio	nal Priority Credits Possibl	le Points: 4
	als and Resources Possible Point	s: 14	4 0	U Regio	That Friding Credits Fossible	e ruints. 4
		a. 14	1	Credit 1.1	Regional Priority: Specific Credit	1
_	Storage and Collection of Recyclables	0	1	Credit 1.2		1
Preced 1	Building Reuse–Maintain Existing Walls, Floors, and Roof	1 to 3	1	Credit 1.3		1
				servant 1.2		
Credit 1.1		1	1	Credit 1.4		1
	Building Reuse—Maintain 50% of Interior Non-Structural Elements Construction Waste Management	1 1 to 2	1	Credit 1.4	Regional Priority: Specific Credit	1

LEED **Gold** Certification 74 / 110 Points

Not bad, but improvements could be made...

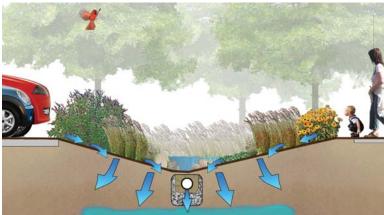

REDESIGN PROPOSAL

- Issue(s) Users' reliance on the automobile to get to the site is substantial, & there is a lack of incentive/encouragement to find other means of transportation
- Proposal(s) Priority parking for electric & carpool vehicles, more covered bike storage, integrated pedestrian & bike paths:
 - Encourages more people to find different means of transportation, such as carpooling, walking, & biking


REDESIGN PROPOSAL

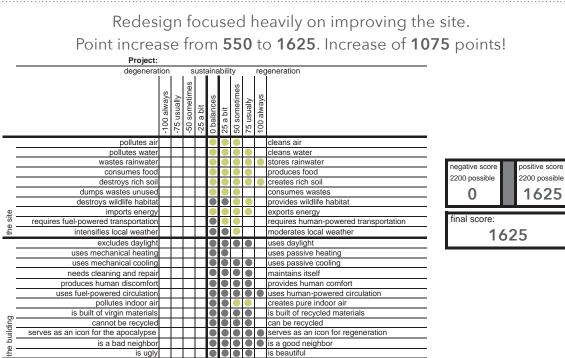
- Issue(s) Site imports all food products, & there is an inadequate wildlife habitat
- Proposal(s) Large scale community garden & wildlife habitat:
 - Becomes a teaching opportunity for young users & members of the community
 - Provides exports of zero kilometer foods
 - A true wildlife habitat could enhance the current "Dewey Park" Wildlife Habitat in Austin, TX

REDESIGN PROPOSAL


- Issue(s) Water being imported is more than necessary, due to lack of water reuse or recycling
- > Proposal(s) Grey water recycling:
 - By filtering & reusing sink water it would lessen the amount of water being imported
 - Water could be reused for toilets, as well as excess being used for irrigation

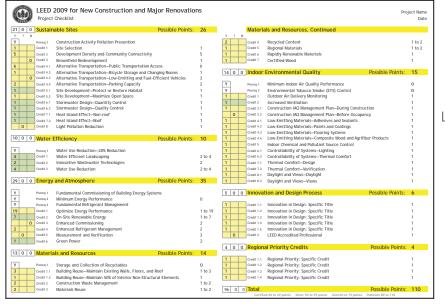
REDESIGN PROPOSAL

- Issue(s) Current system only slows down velocity of stormwater being sent to city sewer, & there is polluted soil & erosion being caused from runoff
- Proposal(s) Site retention
 bioswales, & permeable paving for parking lot:
 - Would lessen discharge into city sewer, & the overflow that is sent off-site would be filtered
 - Help with issue of erosion
 - Reduces heat island effect



REDESIGN PROPOSAL

- Issue(s) Imports more energy than necessary
- > Proposal(s) Photovoltaics on roof:
 - Large flat roof provides an opportunity to integrate a substantial amount of PVs
 - Excess energy could be exported back to the grid
 - Integrating with cool roof will help alleviate heat island effect on the roof
 - Other unique options could be found



REDESIGN – MALCOLM WELLS' CHECKLIST

REDESIGN – LEED CHECKLIST

Redesign focused heavily on improving the site. Point increase from **74** to **96**. Increase of **22** points!

LEED Platinum Certification

96 / 110 Points

CONCLUSION

The **aftermath** of the abandoned **Walmart** had a substantial **impact** on the sustainability of the **site**.

Changes such as: **encouraging** other means of **transportation**, implementation of a **community garden** & **wildlife habitat**, **grey water** reuse & **recycling**, **bioswales** & **permeable paving**, & integration of **photovoltaics** can improve overall sustainability.

By making these changes we were able to achieve an increase of **1075** points in the Malcolm Well's Checklist & also an increase of **22** points in the LEED Checklist.

These changes could potentially take the McAllen Main Library from LEED Gold to **LEED Platinum** & push the building closer to becoming **net zero**.

