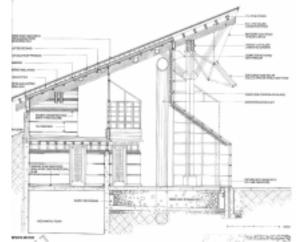
Arch 464 ECS Spring 2001

Name_

Quiz #1

"Award-Winning and Sustainable?"


For this problem you are the sustainable architecture critic for the Environmental Building News. Your topic is "Award-Winning" Energy-Efficient Houses of the Past." Your assignment is to use Malcolm Wells' "Wilderness-Based Checklist for Design and Construction," which was published before the house was designed, to rate the Arne Bystrom-designed Sun Valley House that was awarded a *Progressive Architecture* Citation in the 32nd Annual P/A Awards program in January 1985 and was featured as the cover story in April 1987. The \$7 million, 8,600 square foot house is occupied yearround by a caretaker. The owners who live in San Francisco occupy the house for about a month each year. The site is xeriscaped for low maintenance in Sun Valley's arid climate.

The original P/A citation described the

View of the south facade ..

house thusly, "**Program**: An extended-family house for winter and summer use with an integrated active and passive solar energy system designed to function after major snowfall, and zoned by functional priorities into three separate areas. **Site**: One acre bounded by a road, a valley, and a series of hills, with views up the valley. **Solution**: With its great overhangs, layered beams, and bracketed column supports, the roof structure is reminiscent of traditional Asian houses and

those of the Swiss Alps, as well as of the mastframed stave churches of Norway and the houses of Greene & Greene. The idea of the house as shelter is further heightened by shaping, cutting, and berming of earth, and with concrete terracing, where the sources are Wrightian, but also influenced by the detailing of Carlo Scarpa. Throughout the progression from entry to the final cavelike spaces, the scale continuously decreases and the detailing increases. An innovative heating and cooling system using solar energy includes state-of-the-art evacuated tube collectors, radiant hydronic floor heating and cooling, evaporative pond cooling, computer-controlled venti-

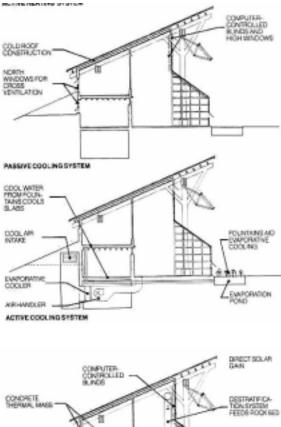
Schematic north-south section.

lation and shading, rock-bed thermal storage, and passive solar applications. The system is assembled in a manner that could be applied also to commercial buildings, and it is expected to reduce energy use by 81%. **Construction:** Concrete walls, concrete floors and terraces, wood structure [laminated beams and posts], wood walls inside and out [redwood], standing seam copper roofing, a layering of sash-type glazing including some with thermal resistance over R-5." Juror Eric Owen Moss declared, "On the other hand, it has a kind of rational dimension that one doesn't really believe; the solar component takes it out of the realm of I-madethis-object-and-isn't it wonderful."

The follow-up cover article, written after construction was complete added more particulars about the house's systems. "Craft permeates the entire building, while the technology is most directly expressed by the white glazing frames and suspended solar collectors; the rest of the intense solar and energy measures are much less evident. Berms on the northeast perimeter of the house, and the broad, sloping copper roof protect against the snow season, and passages through the berms are simply not used at that time of year.

"In plan, the rooms are arranged in an offset, sawtooth configuration. This allows the best solar orientation, and an autonomy for each of the [five] bedroom/bath/dressing suites on the upper and lower levels...All of these suites are basically selfcontained and front on a "solar gallery" encapsulated by the greenhouselike glazed south facade elements, Although it might not be done frequently, it is possible to let each zone, the bedroom units and the solar space, float in terms of temperature, independent of each other. The bedrooms have their own windows and shades overlooking the gallery to the view beyond; the angle-topped shades withdraw into pockets below each opening. Operable sash in both the gallery side and and the north (outside) wall permit independent cross-ventilation or fresh air....

"...The greenhouse forms and the plane above them are designed to allow ample view of the spectacular mountain scenery and still be efficient, by using a complex array of special features. A dual-pane glazing system with "Heat Mirror" and



Site and area plans. Northeast is up.

The living room occupies the west end of the house.

argon gas between the glass is employed; computercontrolled slat blinds and awning windows at the top of the window wall operate automatically to control sun and temperature. ... Along the same wall are two other elements of the energy system, representing the combined approach to solar usage in the house. The most obvious is the collector array, a bank of evacuated nonsilvered tubes (efficiency was sacrificed here for aesthetic and view reasons) which exchange heat from air into a manifold and into a heat-transfer oil; this medium [is used to heat domestic hot water and water for hydronic radiant slabs.] ... The second system is a combination of destratification tubes, which draw heated air from high in the gallery space into a rock bed storage provided below the gallery floor, and the thermal mass of the floors themselves. ... For cooling, a carefully thought out cross-ventilation system is augmented by the same radiant floors, cooled with water form the decorative fountain in the courtyard outside, which doubles as an aid to evaporative cooling. A mechanical evaporative cooling unit draws cool outside air from the bermed side of the building; ... The double "cold roof" construction (see section) protects against heat gain in the cooling mode as well as heat loss in the heating mode, since it isolates the snow-covered copper several times from the interior T&G decking. The R-40 rigid insulation above the decking obviously helps."

An operable north-side living room window protected by the overhanging roof.

ACTIVE HEATING SYSTEM

Heating and cooling sections.

1. Based on the text and photos from *Progressive Architecture*, rate the house using Wells' \mathcal{Z} checklist. Point out which ratings you're making educated guesses on and give a rationale for your \mathcal{T} guesses.

2	Aalcolm Wells' Wildernes Project:	s-B	lasi	ed (Che	ckl	ist	for	Des	
2 3 P								-		
3 P	Project:									M. Wells 1969
	Project:								-	
			-							
				S			6			
		ŝ	~	lê.			ĕ		0	
		-100 always	75 usually	-50 sometimes	-		50 sometimes	È.	00 always	
		al-	ß	B.	ā	25 a bit	١ <u>Ş</u>	75 usually	12	
		8	5	0	а С	a o	l 🎽	Ĕ	ğ	
5		7	5	Ŷ	5	З,	ы	ř	ι÷.	
6 d	lestroys pure air									creates pure air
7 d	lestroys pure water		1				1			creates pure water
8 W	vastes rainwater		10				1			stores rainwater
9 p	roduces no food		1				1			produces its own food
	lestroys rich soil									creates rich soil
	vastes solar energy		Ĩ.							uses solar energy
	tores no solar energy									stores solar energy
	lestroys silence		2				2			creates silence
	lumps its wastes unused									comsumes its own wastes
	eeds cleaning and repair									maintains itself
	lisregards nature's cycles		1							matches nature's cycles
	lestroys wildlife habitat		1							provides wildlife habitat
	lestroys human habitat		1							provides human habitat
and the second second	ntensifies local weather									moderates local weather
	s ugly									is beautiful
21	5		-	-	-		-			
22		neg	ative	sco	ore	pos	sitive	sco	re	
23		150	0 po:	ssibl	e	150	0 po	ssibl	e	
24										
25										
26										
27		fina	als	cor	e:					
28										
29					1					
30										

2. Explain why you agree or disagree with this rating.

3. Re-evaluate the building using the newer SBSE Regeneration-based checklist. Annotate Ξ assumptions you made in your ratings, giving your rationale.

	А	B	С	D	E	F	G	Н	1	J	Κ	L
1	teg	eneration-Based Checklist for De	si	gn	and	d C	on	str	uct	tio		
2												
3		Project:										-
4		degenerati	on		SL	usta	aina	abili	tv		rec	generation
									ŕ			
			18	~	sometimes		60		sometimes		0	
			-100 always	-75 usually	E E	÷±	0 balance:		Ē	75 usually	always	
			8	ŝ	1 S	a bit	립	a bit	ĕ	lSu Su	훖	
2			ΙĔ	2	ŝ	-25	å	258	50 s	5	9	
5			1		7	· 7	0	2	5 S	~	-	
6		pollutes air			_		_	_				cleans air
7		pollutes water					-	0				cleans water
8	2	wastes rainwater	_				-	÷		_		stores rainwater
9		consumes food					_	-				produces food for others
10		destroys rich soil			-			8-		-3		creates rich soil
11	site	dumps its wastes unused	-				-	0	_	-		consumes its own wastes
12	the	requires fuel-powered transportation	-		_		-	-				requires human-powered transportation provides wildlife habitat
13	₽	destroys wildlife habitat			-		_					
14		intensifies local weather			-		_	-		-3		moderates local weather
15		excludes natural light						0		-0		uses natural light
16	-	uses mechanical heating					-	-		_		uses passive heating
17		uses mechanical cooling			_			_				uses passive cooling
18		needs cleaning and repair						_				maintains itself
19		produces human discomfort						0				provides human comfort
20		uses fuel-powered circulation			_			-				uses human-powered circulation
21	0	pollutes indoor air						_				creates pure indoor air
22	÷등	cannot be recycled						_				can be recycled
23	5	serves as an icon for apocolypse						0				serves as an icon for regeneration
24	the building	is a bad neighbor			_		-	÷		_	_	is a good neighbor
25	ŧ	is ugly					_	-		_	_	is beautiful
26	_		_					_				
27			-			cor		-	sitiv	-		
28			20	00 p	oss	ible		20	00 p	oss	ible	
29				_	-			_	-	_		
30				_								
31					-	_	-					
32			fin	al s	CO	re:	-	1				
33			_		_		-	-		_	-	
34			_			_		_				
35							-					

4. Explain why you think this rating is more or less accurate than the wilderness-based rating. \tilde{a} Defend your rating for row 23, serves as an icon for the apocalypse or serves as an icon for regen- \tilde{a} eration.