Flow and Velocity Calculations

Start Audio Lecture!

Volumetric Flow Rate

- $\mathrm{Q}=\mathrm{A} V$
- flowrate is equal to area of flow times the velocity of flow \qquad
- Dimensions are L3/T = Volume/Time
- Typical Units are Gallons/Day, Gallons/Min (gpm) Cubic Feet per second (cfs), etc.
- Top eq'n shown in units: $\mathrm{ft}^{3} / \mathrm{sec}=\mathrm{ft}^{2} \mathrm{xft} / \mathrm{sec}$

Units note: CFS, cfs, gpm

- At the Univ., many science courses require SI units (e.g. L/sec, or mL/min)
- In US water plants, "Traditional" or "English" units are still used
- $\mathbf{f t}^{\mathbf{3}} / \mathbf{s e c}=$ cubic feet per second $=\mathbf{c f s}$ is often used for flows in rivers, creeks, and large pipes
- Gallons/min = gpm is often used for smaller flowrates, such as well production, and flow through smaller pipe systems
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Memorize this conversion

- You will need to be able to convert frequently between ft^{3} and gallons
- As indicated on the previous slide, one \qquad cubic foot is a lot bigger than one gallon
- The conversion is:
$1 \mathrm{ft}^{3}=7.48$ gallons (memorize this!) \qquad
- Notice also that cfs has seconds, and gpm has minutes \qquad
$1 \mathrm{~min}=60 \mathrm{sec}$
\qquad
Example Problem - converting gpm
to cfs
- If you drill a well for a domestic
residence, you always hope for 5 gpm. What is $\mathbf{5} \mathbf{~ g p m ~ w h e n ~ e x p r e s s e d ~ a s ~ c f s ? ~}$

$$
\frac{5 \mathrm{gal}}{\min } \cdot \frac{1 \mathrm{~min}}{60 \mathrm{sec}} \cdot \frac{1 \mathrm{ft}^{3}}{7.48 \mathrm{gal}}=.01 \frac{\mathrm{ft}^{3}}{\mathrm{sec}}
$$

- Note that minutes cancel, and so do gallons.
- Note that the second 2 terms are
"identities"; they are equal to 1 because the \qquad top and bottoms are equal in magnitude.
- So 5 gpm , which is adequate well flow, is very small when compared to a river flow. River flowrates are usually 1000 cfs or more.

Measuring Flowrate (volumetric)

- How do you measure (volumetric) \qquad
flowrate?
- With a bucket and a stopwatch! \qquad
For example, take a 5 gallon bucket, mark where it fills to 2 gallons, then measure how long it takes to fill up to the line.
\qquad Assume you get 30 seconds.
Using the formula Q = volume/time, you find that $\mathrm{Q}=2$ gallons $/(.5 \mathrm{~min})=4 \mathrm{gpm}$
- In a water plant, with meters
\qquad
\qquad
\qquad

What is the Area term in a
Rectangular Channel

- In the $\mathrm{Q}=\mathrm{A} V$ equation, the cross- \qquad sectional area for a channel (or trough) is the wetted area \qquad
- Equation for flow through a rectangular channel:
$Q=($ Width) (Depth) (Velocity)

\qquad
\qquad
\qquad
\qquad

$$
Q=\frac{w_{1}+w_{2}}{2}(\text { Depth })(\text { Velocity })
$$

\qquad
\qquad
\qquad

Pipe (Circular cross-section)

- Equation for flow through a pipe, \qquad where D is the pipe diameter

$$
Q=\pi \frac{D^{2}}{4}(\text { Velocity })
$$

\qquad
\qquad
\qquad
\qquad

