MALE REPRODUCTIVE ANATOMY

Basic components of the male reproductive system are the: scrotum, testis, spermatic cord, excurrent duct system (epididymis, ductus deferens, urethra), accessory sex glands, and penis and associated muscles (Figures 3-1, 3-2 to 3-4)

I. SCROTUM (Fig. 3-11, 3-15)

A. Function
 1. Thermoregulation/radiation
 2. Protection and support of testis
B. Thermoregulation Mechanism (Figure 3-11)
 Sweat glands and thermosensitive nerves are involved
C. Scrotum layers (Figure 3-2 & 3-15)
 1. Skin
 2. Tunica dartos (dartos muscle)
 - Smooth muscle
 - Elevate the testes for a sustained period of time in response to temperature or stress
II. Spermatic Cord (Figure 3-4; Bull)

A. Function

1. Suspends the testis in the scrotum
2. Provides pathway to and from the body for the testicular vasculature, lymphatics, and nerves
3. Thermoregulation Mechanism (Figures 3-9, 3-10)
 - **Pampiniform plexus**: Provides a countercurrent heat exchange mechanism and act as a pulse pressure eliminator
4. Houses the **cremaster muscle** (see Figure 3-2)
 - Primary muscle supporting the testis
 - Coursing the length of spermatic cords
 - Involves with testicular temperature regulation
 - Striated muscle, short-term elevation of testes (NOT capable of sustained contraction like the tunica dartos in the scrotum)
5. Houses the **ductus deferens**
 - Responsible for sperm transport from epididymis to the urethra

III. TESTIS (Fig. 3-14, 3-15)

A. Functions

1. Produce male germ cells (spermatozoa)
2. Produce male steroid hormone (testosterone)
3. Produce inhibin and estrogen, and other proteins
B. Structures (Figure 3-14)

Testicular Capsule: (Two layers)

1. Tunica vaginalis
 - a. Thin membrane
 - b. Provides support
 - c. From peritoneum
2. Tunica albuginea
 - a. Connective tissue
 - b. Provides structure

Mediastinum:
- a. Connective tissue
- b. Provides internal support

TesticularParenchyma (Figure 3-15):

1. **Seminiferous tubule**
 - a. Site of sperm production
 - b. Consists of 2 cell types (Figure 3-16)
 i. **Germ cells** (eventual sperm cells)
 ii. **Sertoli or nurse** cells

 - Produce variety of substances
 - including *androgen binding protein, sulfated glycoprotein, transferrin, and inhibin*
 - Surround developing germ cells
 - Providing structural and metabolic support to the developing spermatogenic cells

Blood-testis Barrier (Figure 3-16):
- Cells surrounding the seminiferous tubules
- Prevent autoimmune reaction from destroying the developing germ cells

Interstitium: (Leydig cells)
- a. Located between seminiferous tubules
- b. Produce **androgens (testosterone)**
6. Rete testis
- a. Collect sperm from seminiferous tubules
7. Vasa efferentia (efferent ductules)
 - a. Collect sperm from rete testis
 - b. Carry sperm out of testis proper
IV. EPIDIDYMIS (Figure 3-18)

A. Morphology
 1. Three parts:
 a. Head (caput)
 b. Body (corpus)
 c. Tail (cauda)

B. Functions
 In the epididymis spermatozoa gain the ability to fertilize an oocyte
 1. **Sperm transport:**
 a. Transport time varies with species
 (1) boars: 9-14 days
 (2) rams: 12 days
 (3) bulls: 14 days
 2. **Sperm maturation**
 3. **Sperm motility**
 4. **Sperm concentration**
 5. **Storage** (Bull = 50-75 billion sperm)
 6. **Production of compounds** (e.g. Glycerol phosphocholine (GPC))

V. VAS DEFERENS/DUCTUS DEFERENS (Figures 3-14, 3-15, 3-19 & 3-20)

A. Paired Ducts
B. Turns into **ampullae** (wide end of the vas deferens) *Not present in boars
C. Function = sperm transport from epididymis to pelvic urethra
D. Ligation = vasectomy

VI. ACCESSORY SEX GLANDS

Accessory glands contain variety of components and ions including citric acid, inositol, and prostaglandins

A. Vesicular glands (Seminal Vesicles) *(Figure 3-15)*
 1. Paired glands
 2. Located at junction of urethra & vas deferens

Adapted from Senger ©
3. Have rough structure
4. Contribute **largest volume** of seminal fluid
5. Add the following
 a. Fructose & sorbitol -- energy sources
 b. Phosphate & bicarbonate -- buffers

B. Prostate Gland *(Figure 3-15)*
1. Located caudal to seminal vesicles and close proximity to pelvic urethra
 a. Bi-lobulated in bull & boar
 b. Diffuse in ram (scattered around pelvic urethra)
 c. Surrounds urethra in dogs & humans
2. Only accessory gland found in dogs*
3. Functions to cleanse & lubricate
4. Secretes just prior to & during ejaculation

C. Bulbourethral Glands *(Cowper's gland)* *(Figure 3-19 & 20)*
1. Paired glands
2. Usually buried under **bulbospongiosus muscle**
3. Small & round in bull, ram, stallion, and man
4. Larger & longer in boar
5. Function:
 a. Bull: cleanse urethra prior to ejaculation
 b. Boar: produces gel fraction and adds considerable volume to ejaculate

D. Colliculus Seminalis
1. Region of urethra where sperm mixes with seminal vesicle secretions
2. Mixing incomplete in stallion, boar
 a. Sperm-free fraction & Sperm-rich fraction

VII. PENIS *(Figures 3-3 to 3-21 & 3-22)*
A. Definition: male copulatory organ consists of a base, a shaft, the glans penis, and crus penis
B. Anatomy
1. **Two erectile tissues:**
 a. **Corpus spongiosum** -- surrounds urethra and involves in erection by allowing rushing of blood into it
 b. **Corpus cavernosum** -- involves in erection by allowing rushing of blood into it
2. **Retractor penis muscle** *(bull, boar, stallion, ram, and buck)*
 - Pair of smooth muscles
 - Dorsally attached to tail vertebrae and it holds the penis inside the sheath in the
3. Three parts:
 a. **Base/root**
 b. **Shaft**
 c. **Glans penis** - Specialized distal end, contains sensory nerves

4. **Crus penis** – posterior portion of

5. **Sheath**: covers penis

C. **Two Classifications**

1. **Fibroelastic** (Bull, boar, buck, ram)
 a. Tunica albuginea – dense connective tissue
 b. Sigmoid flexure – S-shaped configuration along shaft of penis that allows penis to be retracted inside sheath until erection occurs
 c. Relies on muscle contractions/sigmoid flexure for erection

2. **Musculovascular** (Stallions, humans)
 a. Erection relies on blood engorgement within corpus spongiosum and cavernosum

D. **Glans Penis Modifications**

1. Bull: No modification
2. Ram & Buck: filiform appendage/ urethral process
3. Stallion: bell
4. Boar: corkscrew
5. Dog: bulbus glandis
6. Tomcat: spines