Introduction to Genomic Selection

OUTLINE

1. What is different between pedigree based and genomic selection?
2. Selection tools
 - Selection Indexes
 - Genotyping resources
3. DNA-based markers and their use in dairy breeding programs

WHY USE SELECTION?

Estimated cost to raise a heifer is $2000-$3000
Second greatest expense for dairy after feed costs

To improve performance
- Nutrition
- Hygiene
- Health program
- Genetics

ACHIEVEMENT OF GENETIC CHANGE
IN RESPONSE TO SELECTION

Genetic Change =
Accuracy of selection x Selection intensity x Genetic variation

Generation Interval

EFFECT OF ACCURACY (RELIABILITY)

Accuracy depends on:
- Amount and type of information available
- With phenotypic selection, high accuracy occurs with high heritability
- Improving accuracy improves the response to selection
- In the dairy industry the term reliability (\% r) is often used for accuracy
SELECTION INTENSITY

How high the threshold is for animals that will be used in the breeding population

- High selection intensity increases the rate of response to selection

GENERATION INTERVAL

- The average age of the parent when their offspring are born
- Reducing the generation interval through assisted reproductive technologies or genomics increases the response to selection

SELECTION PEDIGREE-BASED PTA

Predicted Transmitting Ability (PTA)

- Estimates (predicts) the future offspring’s performance based on records obtained from:
 - Own performance
 - Relative’s performance (pedigree)
 - Past offspring’s performance
- Accuracy of prediction is typically poor until a large number of progeny have performance records

SELECTION PREDICTION EQUATIONS

The PTA measures the expected difference between the animal’s offspring and the mean of all offspring for that trait.

- Mean of the herd’s offspring = 25,000 pounds
- Mean of the cow’s offspring = 27,000 pounds
- PTA = +2000 lbs.

SELECTION PEDIGREE-BASED PTA

Pros

- Very effective with animals with large numbers of progeny
- Most effective with traits that are:
 - Easy to measure
 - Inexpensive to measure
 - Occur early in life
 - Moderate to high heritability

Cons

- Accuracy is low for most females throughout their lives
- Expensive and time consuming to “prove” bulls through extensive progeny testing
- Not effective for traits that are:
 - Difficult to measure
 - Expensive to measure
 - Occur late in life
SELECTION

GENOMIC BASED PTA

Use pedigree information **AND** information from thousands of DNA variants to predict performance of offspring.

Cons

- If the DNA variant isn't causal, prediction may not be accurate across breeds and will need to be routinely validated.

IMPROVING ACCURACY

<table>
<thead>
<tr>
<th>Trait</th>
<th>Genetic Average</th>
<th>Traditional Parent Average</th>
<th>Difference Young Holstein Bulls1</th>
<th>2011 Difference Holstein Heifers2</th>
<th>Genomic Daughter Equivalents2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net Meat (lb)</td>
<td>75</td>
<td>51</td>
<td>+42</td>
<td>+42</td>
<td>35.1</td>
</tr>
<tr>
<td>Fat (lbs)</td>
<td>75</td>
<td>35</td>
<td>+45</td>
<td>+48</td>
<td>26.0</td>
</tr>
<tr>
<td>Protein (percent)</td>
<td>75</td>
<td>50</td>
<td>+52</td>
<td>+46</td>
<td>26.6</td>
</tr>
<tr>
<td>Productive Life (years)</td>
<td>75</td>
<td>20</td>
<td>+64</td>
<td>+51</td>
<td>27.0</td>
</tr>
<tr>
<td>Somatic Cell Score</td>
<td>75</td>
<td>31</td>
<td>+43</td>
<td>+43</td>
<td>38.5</td>
</tr>
<tr>
<td>Daughter Pregnancy Rate (%)</td>
<td>71</td>
<td>27</td>
<td>+43</td>
<td>+42</td>
<td>146.3</td>
</tr>
<tr>
<td>Final Score</td>
<td>76</td>
<td>32</td>
<td>+44</td>
<td>+46</td>
<td>26.6</td>
</tr>
<tr>
<td>Sire Calving Ease</td>
<td>73</td>
<td>36</td>
<td>+18</td>
<td>+26</td>
<td>38.5</td>
</tr>
<tr>
<td>Daughter Calving Ease</td>
<td>73</td>
<td>36</td>
<td>+18</td>
<td>+26</td>
<td>38.5</td>
</tr>
</tbody>
</table>

WHY ARE DAIRIES USING GENOMIC TESTS?

- Increased (and improved) reporting of traits
- Improved customer confidence in genomic tests
- Ease of access
- Cost of testing is lower
- Implementation is increasing profitability and response to selection

GENOMIC SELECTION

Pros

- Prediction can be immediate (birth) rather than waiting for offspring to perform
- Dramatically increases rate of genetic change
- Best value when:
 - Selecting for traits that are difficult to measure
 - Selecting for traits that are expensive to measure
 - Selecting for traits that occur late in life
 - Animal has 0 or few offspring

SINGLE NUCLEOTIDE POLYMORPHISMS

DNA can be extracted from any tissue including blood, hair and semen.

WHEN TO GENOTYPE

APRIL 11, 2018
USING GENOMIC SELECTION

When to genotype?
- First 30 days
- Post-weaning (6 months)

Inform mating decisions
- Elite females – sexed semen, better bulls, ET donors
- Poorer females – beef bulls

BREEDING OBJECTIVES

Breeding objectives determine when to genotype
- What are your goals for your dairy?
- When do you want to sort your females?

BEFORE WE GENOTYPE...

Identifying goals and choosing priorities
- Identify replacements
- Identify females that won't produce replacements
 - Breed to beef bulls
- Identify elite females
 - Sexed semen
 - Assisted Reproductive Technologies
 - Breed to better bulls
- Reduce effects of early disease
- Reduce generation interval

GENOTYPING EARLY

First month
- Identification of replacements and elite females to sort heifers early for different levels of care
- Facilitates reducing generation interval by using assisted reproductive technologies
- Potential to further increase genetic progress

AFTER WEANING OR AFTER CO-MINGLING

Stratify females before breeding but with knowledge of resistance to BRD, scours, etc.
- Sort into breeding strategies by overall quality using selection indexes or to maximize complementarity with additional emphasis on specific traits
- Keep or cull

WHO TO GENOTYPE
USING GENOMIC SELECTION

Who to genotype?
- Identify replacements, sell or send other heifers to feedlot
- Rank females for mating decisions

BREEDING OBJECTIVES ALSO INFLUENCE WHO IS GENOTYPED

Identification of replacements, dams of future replacements or elite females
- Genotype more animals than you plan on keeping for replacements or elite females
- More you genotype, the choosier you can be for selecting your replacements
- Genotyping more animals improves accuracy of keeping the right individuals
- Genotyping more animals therefore results in faster genetic progress

SELECTION INDEXES

- PTAs of individual traits
- Predicted transmitting abilities (PTA) of dairy cattle are often summed into a selection index
- Selection indexes combine PTAs of various traits, weights them and gives you a single value to select by
- Weights can be based on economic value or the prioritization of what traits are the most important
- Examples: Total performance index (TPI), Net merit$ (NMS)

WHAT INFORMATION DO WE GET?

Predicted transmitting abilities on key traits and selection indexes

NET MERIT$

The NMS index is defined as expected lifetime profit as compared with the breed base for cows born in 2010

Updated in 2014 to include:
- New economic weights
- 2 more fertility traits - heifer conception rate (HCR) and cow conception rate (CCR)
- Grazing merit (GMS)
- Cheese merit (CMS)
- Fluid merit (FMS)
- Details may be found at http://aipl.arsusda.gov/reference/nmcalc-2014.htm

Estimated that $8 million/year would be gained if all dairy breeders selected breeding stock using NMS (VanRaden and Cole, 2014)

GRAZING MERIT DOLLARS

Introduced in 2014 for cows in grazing herds

Fertility is of high importance as most grazing herds participate on a seasonal breeding and calving system

- Management (health & fertility) comprises 46%
- Production comprises 39% with focus on pounds of fat and protein produced
- 15% comes from conformation
Selection index developed by the **US Holstein Association** as a representation of their vision for improvement of the domestic and international Holstein population

Traits are weighted rather than multiplied by an economic value ($) as is done with NM$

TOTAL PERFORMANCE INDEX

JERSEY PERFORMANCE INDEX

- Selection index developed by the American Jersey Cattle Association with the overarching objective of increasing lifetime net income
- Developed from extensive evaluation of production, longevity, and health data to predict lifetime net profit from production, type, health, longevity and fertility traits

NEOGEN – IGENITY® TESTING

GGP HD150K $92-96
- 150k SNPs
- Reliabilities of 71-74%
- Supports Holstein, Brown Swiss, Ayrshire

GGP LD $42-46
- 42k SNPs
- Reliabilities of 68-72%
- Supports Holstein, Brown Swiss, Ayrshire, Jersey, Guernsey, Gyr, Girolando

EXAMPLE IGENITY® REPORT ON KEY TRAITS

<table>
<thead>
<tr>
<th>ID</th>
<th>GM$</th>
<th>NM$</th>
<th>Rank</th>
<th>NM$ USA %</th>
<th>Rank</th>
<th>Milk Yield</th>
<th>Fat lbs</th>
<th>Protein lbs</th>
<th>SCS</th>
<th>PL</th>
<th>DPR</th>
<th>DCE</th>
<th>IPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>635</td>
<td>627</td>
<td>1</td>
<td>99%</td>
<td>1102</td>
<td>49</td>
<td>30</td>
<td>2.84</td>
<td>5.8</td>
<td>2.7</td>
<td>5.8</td>
<td>2363</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>577</td>
<td>597</td>
<td>2</td>
<td>99%</td>
<td>1192</td>
<td>53</td>
<td>39</td>
<td>2.65</td>
<td>5.5</td>
<td>1.8</td>
<td>6.8</td>
<td>2322</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>360</td>
<td>375</td>
<td>4</td>
<td>98%</td>
<td>1431</td>
<td>26</td>
<td>28</td>
<td>2.95</td>
<td>3.4</td>
<td>0.9</td>
<td>5.9</td>
<td>2066</td>
<td></td>
</tr>
</tbody>
</table>

- **GM$** - grazing merit $
- **NM$** - net merit $
- **SCS** - somatic cell score
- **PL** - productive life
- **DPR** - daughter pregnancy rate
- **DCE** - daughter calving ease
- **Milk yield** - differences in pounds of milk for a 305 day lactation
- **Fat lbs** - differences in pounds of fat for a 305 day lactation
- **Pro lbs** - difference in lbs. of protein yielded for 305 day lactation
- **IPI** - Igenity production index (same as TPI)

ZOETIS TESTING

Clarifide® $39.50-42.50
- >20K SNPs
- Reliability 70-71%

Clarifide® $79-86
- 62K SNPs
- Reliability 72-75%
- Jersey, Brown Swiss

Clarifide® Ultra Plus $79-86
- Holstein
- Reliability 73%
- Includes Dairy Wellness Profit Index (DWP$)
- Includes Wellness Trait Index (WT$)

PUTTING IT INTO PRACTICE

- **SCE** - Sire calving ease
- **HCR** - Heifer conception rate
- **CCR** - Cow conception rate
- **DSB** - Daughter stillbirth
- **SSB** - Sire service stillbirth

ZOETIS TESTING

Clarifide® $39.50-42.50
- >20K SNPs
- Reliability 70-71%

Clarifide® $79-86
- 62K SNPs
- Reliability 72-75%
- Jersey, Brown Swiss

Clarifide® Ultra Plus $79-86
- Holstein
- Reliability 73%
- Includes Dairy Wellness Profit Index (DWP$)
- Includes Wellness Trait Index (WT$)
• Which will be the most profitable heifer?
• Which heifer will be the least profitable?

ACTUAL PROFITABILITY

SUMMARY

• When genotyping is done and what cattle are genotyped should reflect the goals of the dairy
• Genomic selection increases the genetic progress of the dairy herd and reduces financial risk
• Genomic selection can also be used for breeding and management decisions
• Genomic selection may be coupled with assisted reproductive technologies to further increase genetic progress
• Don’t use genomic selection if you aren’t going to use the information to make decisions

BREED DIFFERENTLY

Sexed Donor Cull Recipient
Semen Dam