Mixing and Compaction Temperatures for Modified Asphalt Binders

Delmar Salomon
Pavement Preservation Systems, LLC
and
Robert Dunning,
Petroleum Sciences, Inc.

45th Annual Idaho Asphalt Conference
October 27, 2005

Outline

- Background
- Methods
 - Currently proposed for estimation of temperature
 - High shear or low shear viscosity?
- State of the Practice
- State of research Project NCHRP 9-39
 - NCAT July, 2005 to Dec 2007

Laboratory vs. Construction

- Stated mixing and compaction temperatures are for mix design only. Purpose is to obtain uniformity between laboratories.
- Construction mixing parameters may be established according to ASTM D-2489
- Construction compaction practice may be determined with a test strip.
- Mix design temperatures must not be specified for construction

Current Method and Problems

- Mixing and compaction viscosities of neat asphalts are independent of shear rate
- Viscosities of PMA binders are shear rate dependent
- Binders of the same grade may have different mixing and compaction temperatures
- Mixing viscosity: 170 mm²/sec (cSt)
- Compaction viscosity: 280 mm²/sec (cSt)
- Many modified binders reach these viscosities only at high temperatures when measured with a kinematic viscometer

Problem Statement

- Current method (equiviscous) of unaged binder
 - Mixing viscosity - 170 ± 20 mm²/s
 - Compaction viscosity - 280 ± 30 mm²/s.
- Many modified binders reach these viscosities at very high temperatures leading to degradation or high volatile loss.
- Some binders may clog kinematic tube giving erroneous values.
- PG binders of the same grade do not require the same compaction effort if modified differently.

Problem Statement, Cont.

- Mix Design Laboratories need mixing and compaction temperatures that correlate with construction
 - Different viscometers operate at different shear rates
 - With PMA, each viscometer will give a different result
 - RTFO residue viscosities relate to the in place viscosities from a pug mill mixed at 325°F
 - Residue from a drum mixer has a considerably lower viscosity because:
 - Operated at a lower temperature
 - About 25% lower oxygen content because of burner
 - Further reduction of oxygen partial pressure from moisture
Viscous Modulus, G''

$\mu = G'' S/d$

Storage Modulus, G'

Complex Modulus, G^*

δ

Complex Modulus is the vector sum of the storage and viscous modulus

d

$S = $shear rate

$\sin \delta \approx 1$ for neat asphalt

$\sin \delta < 1$ for PMA

Dynamic Modulus (DSR)

Neat Asphalt

PMA

Typical viscosity shear rate dependence @ 320 F, 275 F

Shear Rate dependence of a PG 76-28 binder at 285 F (source: Texas)
Shear Rate Dependency of Polymer modified binders

Viscosity Curve @ 329 F

- **Low Shear**
- **High Shear**

Viscosity Curve @ 275 F

NAPA Mixing Temperature Recommendation

<table>
<thead>
<tr>
<th>PG Grade</th>
<th>Low</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>PG 58-28</td>
<td>261</td>
<td>309</td>
</tr>
<tr>
<td>PG 58-34</td>
<td>261</td>
<td>309</td>
</tr>
<tr>
<td>PG 64-22</td>
<td>264</td>
<td>320</td>
</tr>
<tr>
<td>PG 64-28</td>
<td>264</td>
<td>320</td>
</tr>
<tr>
<td>PG 64-34</td>
<td>264</td>
<td>320</td>
</tr>
<tr>
<td>PG 70-28</td>
<td>275</td>
<td>325</td>
</tr>
<tr>
<td>PG 76-22</td>
<td>286</td>
<td>334</td>
</tr>
<tr>
<td>PG 76-28</td>
<td>280</td>
<td>331</td>
</tr>
</tbody>
</table>

Reference: NAPA EC101 Best Management Practices to Minimize Emissions During HMA Construction

A different view: Ranking the flow energy of binders

- Modify base asphalt, e.g. PG 64-28 (85/100)
- Determine viscosity at several temperatures
- Obtain high shear rate viscosity data
- Determine activation energy from the Arrhenius equation
- Rank binders according to their activation energy for flow

What is viscosity?

- Viscosity is resistance to flow
- Intermolecular forces are responsible for resistance to flow
- Viscosity is a non-equilibrium transport process of a fluid
- Energy is needed to overcome resistance to flow

Simplified distribution

\[
\eta = Ae^{\Delta F_r / RT}
\]

At temperature increases, the probability of finding molecules at higher energy increases.

This distribution gives the average fraction of molecules with energy greater than \(\Delta E_r\) that is flow and hence workable for compaction.
Arrhenius Law

\[
\eta = Ae^{\frac{\Delta E}{RT}}
\]

- \(\Delta E\): Activation Energy
- \(R\): Universal Gas Constant, 8.314 J/mol K
- \(A\): a constant

\[
\ln \eta = \ln A + \frac{\Delta E}{RT}
\]

Typical Arrhenius plot for binders

Activation Energy vs. film thickness

Effects of modifier types on the activation energy for flow

Activation energy for flow for different asphalt binders
Effect of aging on the activation energy for flow

Preliminary conclusions

- The presence of shear susceptibility in PMA binder confuses the determination of laboratory mixing and compaction temperatures.
- Mixing and compaction temperatures used for mix design should not be specified for construction.
- It is proposed that the activation energy for flow can be used to better rank binders with respect to rheological properties.
- Air blown asphalts have higher activation energies than similar PG grades.
- Chemically modified binders made from the same base asphalt have activation energies similar to air blown.
- PAV aging increases the activation energy by at least 10 kJ/mole.

Preliminary conclusion, Cont.

- The activation energy for flow for binders should be related to the necessary compaction effort (after the effect of aggregate is taken into consideration).
- The viscosity of the asphalt residue from a drum mixture cannot be predicted from a RTFO test at 325°F.
- The use of activation energy might provide a better procedure for obtaining rational laboratory and field mixing and compaction temperatures.

Thank You!! Gracias!!

www.pavementpreservationsystems.com