Slurry Seals and Micro-surfacing Mix Design

FHWA Pooled Fund Study
(Adapted from a MPPP presentation)

David R. Johnson, P.E.
Regional Engineer
Asphalt Institute

Slurry Seals and Micro-surfacing

• “Catch-all” Preservation Techniques
 – Minor rutting (Micro-surfacing)
 – Surface cracking
 – Aggregate polishing
 – Raveling

• Aesthetical Improvement
• Typically Quick Return to Traffic

Significant History

– Surface Seals
 • First used in early 1900s
 • Empirical or trial-and-error driven
 • Late 1960s – Norman McLeod Method introduced

– International Slurry Surfacing Association (ISSA) established in 1963
 • 122 members
 • 36 countries

FHWA Pooled Fund Study

- FHWA
- States
 - CA, DE, GA, IL, KS, ME, MI, MN, MO, NH, NY, ND, TX, and VT
- ISSA
- Consultants
 - Fugro Consultants
 - MACTEC Engineering and Consulting
 - Consolidated Engineering Labs
 - Applied Pavement Technology

Three Phases
- Phase I (Completed 2004)
 - Literature Review
 - Industry and Agency Survey
 - Finalize Phases II & III
- Phase II (In Progress)
 - Develop Mix Design
- Phase III (In Progress)
 - Field Trials
 - Specifications and Guidelines
 - Training Manuals

Literature Review

- Review Worldwide Usage
- Current Mix Designs
 - ISSA
 - TTI
 - ASTM
- Field Performance of Existing Installations
 - USA
 - Canada

Project Goals

“The overall goal of this research is to improve the performance of slurry seal and micro-surfacing systems through the development of a rational mix design procedure, guidelines, and specifications.”
- Phase I Final Report, March 2004
Literature Review

- Guidelines and Specifications
 - ISSA
 - TTI
 - Caltrans
 - Austroads
 - CSIR (South Africa)

Surveys

- Respondents
 - 21 Agencies
 - 21 Industry
 - 4 Advisory Panel

Surveys

- Current Mix Designs
- Current Use of Technologies
- Current Benefits
- Current Problems
- Current Life Expectancies
- Current Tests and Performance
- Current Quality Assurance

Survey Findings

- Mix designs all derived from ISSA Guidelines A105 (Slurry) and A143 (Micro)
- Project success dependent on experience
- Laboratory test repeatability questionable
- Performance data limited
- Failures typically attributed to project selection
 - Surface condition
 - Rutting
Phase II – Currently Active

- Developing framework for Mix Design
- Evaluating test methods
 - Existing
 - Proposed
- Finalize Mix Design
- Offer recommendations for field trials

Laboratory Testing

- Highly Repeatable
- Relate to Field Performance
- Consistent with Field Conditions
 - Temperature
 - Humidity
- Ease of Implementation
- Reasonable Cost

Mix Properties

- Mixable – proper and homogenous coating
- Workable – allows for a quick return to traffic
- Performance – mixture provides good long-term characteristics

Differences

- No Distinction

Slurry Surfacing Systems (S3)
(Slurry = Micro-surfacing)
Major Changes – Proposed

<table>
<thead>
<tr>
<th>Current Testing</th>
<th>Proposed Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISSA TB 113 – Trial Mix Procedure for Slurry Seal Design</td>
<td>Automated Mixing Test (AMT)</td>
</tr>
<tr>
<td>ISSA TB 100 – Test Method for Wet Track Abrasion of Slurry Surfaces (WTAT)</td>
<td>Cohesion-Abrasion Test (CAT)</td>
</tr>
<tr>
<td>ISSA TB 139 – The Modified Cohesion Tester</td>
<td>Automated Cohesion Test (ACT)</td>
</tr>
<tr>
<td>Tests run at standard laboratory temperature and humidity</td>
<td>Tests run over a range of temperature and humidity conditions</td>
</tr>
</tbody>
</table>

Automated Mixing Test

- Spread Time
- Mixing Time
- Mixing Torque

Automated Mixing Test

- Spreads and times test materials with a controlled spread.
- Measures mixing and torque conditions.

Cohesion-Abrasion Test (CAT)

- Evaluates the cohesion and abrasion properties of slurry seal materials.
- Utilizes a modified cohesion tester for standardized testing conditions.
Evaluation of CAT

- 300 Tests
- 5 Slurry Systems
- 3 Temperatures
- 2 Humidity Levels
- Compacted and Uncompacted
- Conditioned and Unconditioned (conditioning = soaking & oven curing)

CAT Results

- Results were not dependent on compaction
- Non-soaked
 - Temperature
 - Humidity
 - Curing Time
 \(\text{Affected Abrasion Resistance}\)
- Models can predict affects

Automated Cohesion Tester (ACT)

Field Tests

- Objectives
 - Correlate to long-term performance
 - Evaluate adherence to mix design
 - Evaluate traffic readiness
- Methodology
 - Current test options
 - Recommendations
Field Test Candidates

- Field Cohesion Test (traffic time)
- Field Abrasion Test (performance)
- GeoGauge (traffic time)
- Infrared Camera (traffic time and uniformity)
- In-Situ Shear Tester (performance)

Progress on Phase II

- Mix Design – Beta Version 3 available
- Test Method Evaluations
 - AMT and CAT – completed
 - ACT – in progress
- Ruggedness Testing – in progress
- Recommended QA Tests – in progress

Pilot Project – Phase III

- 5 States have expressed interest
- Developing site selection guidelines
- Developing test section layout
- Developing construction guidelines
 - Pre-construction
 - Construction
 - Post-construction

Training – Phase III

- 1.5-Day Course
 - Reference Manual
 - Visual Aids
 - Instructor’s Guide
 - Workshops
- Project Training Module
 - Pocket Guide
 - Tailgate Session
Deliverables – Phase III

- As of October 2007
- Training – 95%
- Guidelines – 90%
- Field Project(s) – Fall 2008

Questions?

- t.joe.holland@dot.ca.gov – Caltrans contact