

56th Idaho Asphalt Conference October 27th 2016

Performance Graded (PG) Asphalt Binder Modification - Lessons Learned With the Hamburg and MSCR

Joe DeVol

Assistant State Materials Engineer State Materials Laboratory

Washington State Department of Transportation

- Just the Facts
 - Connecting Washington Transportation Package
 - 16 Year, \$16 Billion Package
 - \$9.7 Billion, state and local road projects
 - \$1.4 Billion, highway maintenance, operations, preservation
 - 11.9¢ Gas Tax, phased in over next two years

Washington State Department of Transportation

- Just the Facts
 - WSDOT manages 18,500 lane miles
 - Smooth, safe and economical pavements
 - 2016 forecast
 - 1,043,000 tons HMA
 - 586,555 tons HMA modified asphalt

Ē

- Background
 - How we got to where we are
 - SHRP efforts 1995
 - Implemented PG Binders 2000
 - Superpave Volumetric Mix Design 2004

• Hamburg & MSCR

What have we learned?

- Asphalt and Anti-Strip Compatibility
- Asphalt Modification Products and Processes
- Benefits of Polymer Modification
 - Note: Dual testing AASHTO M 320 & M 332 since 2008

Hamburg Testing

• Hamburg Testing

• Hamburg Testing

Number of Wheel Passes

Hamburg Testing

Asphalt & Anti-Strip Compatibility

Hamburg Samples with PG64-28 "Original Formulation"

• Hamburg Testing

- Asphalt & Anti-Strip Compatibility
 - Results of data analysis
 - AASHTO M 320 binder meet specification
 - Mix design
 - Lottman improved TSR with anti-strip
 - Hamburg significant rutting with anti-strip

Hamburg Testing

Asphalt & Anti-Strip Compatibility

Hamburg Samples with PG64-28 "Polymer Modified"

Asphalt Binder Testing

Data Analysis

Original Formulation

- Met Conventional PG Specs (AASHTO - M 320)
- Met MSCR Specs * (AASHTO - M 332)
- Elastic Recovery = <u>25%</u> (AASHTO - T 301)

*<u>Excluding</u> Appendix X1

Polymer Modified

- Met Conventional PG Specs (AASHTO - M 320)
- Met MSCR Specs ** (AASHTO - M 332)
- Elastic Recovery = <u>74%</u> (AASHTO - T 301)
 - **<u>Including</u> Appendix X1

Asphalt Binder Testing

Data Analysis

- Typical Modified PG Binders
 - Met all specifications requirements (AASHTO M 320)
 - Passed MSCR (AASHTO M 332) *

*Excluding Appendix X1 (% recovery)

• Tested elastic recovery (AASHTO - T 301)

Hamburg & MSCR

Where are we today?

- Elastic Recovery Specification 2012
- Hamburg and IDT Specification 2014
- Multiple Stress Creep Recovery 2018

Elastic Recovery Specification

Property	Test Method	Additional Requirements by Performance Grade (PG) Asphalt Binders										
		PG 58-22	PG 64-22	PG 64-28	PG 70-22	PG 70-28	PG 76-28					
RTFO Residue:												
Elastic Recovery ¹	AASHTO T 301 ²			60% Min.	60% Min.	60% Min.	60% Min.					
Notes:												
 Elastic Recovery @ 25°C ± 0.5°C Specimen conditioned in accordance with AASHTO T 240 – RTFO 												

Hamburg and IDT Specification

	HMA Class									
	³⁄₃ inch		½ inch		¾ inch		1 inch			
Mix Criteria	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.		
Hamburg Wheel-Track Testing, WSDOT FOP for AASHTO T 324 Rut Depth (mm) @ 15,000 Passes		10		10		10		10		
Hamburg Wheel-Track Testing, WSDOT FOP for AASHTO T 324 Minimum Number of Passes With no Stripping Inflection Point	15,000		15,000		15,000		15,000			
Indirect Tensile (IDT) Strength (psi) of Bituminous Materials WSDOT FOP for ASTM D 6931		175		175		175		175		

Hamburg Mix Design Test Data

Rut Depth in Millimeters

Number of Wheel Passes

WSDOT HQ Materials Laboratory

Force

• <u>Multiple Stress Creep Recovery</u>

Where we're headed next!

- Multiple Stress Creep Recovery 2018
 - * Working with PCCAS, Regional Task Group & WAPA
- Would Replace Elastic Recovery
- New PG Grading Terminology

Asphalt Binder Grading - 101

- Current Grading System
 - Base grade (Environment)
 - Grade bump (Traffic/Load)
 - Bump = same stiffness at <u>higher</u> temperature
 - Allows for products & processes that may affect performance

- MSCR Grading System
 - Base grade (Environment)
 - Grade bump (Traffic/Load)
 - Bump = increase stiffness at <u>service</u> temperature
 - Requires products & processes that ensure performance

Asphalt Binder Grading - 101

- Current Grading System
 MSCR Grading System
 - PG58-22
 - PG64-22
 - PG70-22
 - PG64-28
 - PG70-28
 - PG76-28

- - PG58<u>S</u>-22 (Standard)
 - PG58<u>H</u>-22 (Heavy)
 - PG58V-22 (Very Heavy)
 - PG64S-28
 - PG64H-28
 - PG64V-28

PG64-28 (PG64-28H) MSCR vrs Jnr 2013

→ Jnr, Kpa • PG64-28

56th Idaho Asphalt Conference Questions?

devolj@wsdot.wa.gov

(360)709-5421

State Construction Office - Information

http://www.wsdot.wa.gov/business/construction

