

Asphalt Pavement Construction: Best Practices

56th Annual Idaho Asphalt Moscow, Idaho October 26-27, 2016

Effect of In-Place Voids on Life

Washington State DOT Study

Enhanced Durability through Increased In-Place Pavement Density asphalt institute

- A 1% increase in field density can increase asphalt pavement service-life +10% (conservatively)
- Today's compaction target is typically 92% of maximum (G_{mm}) (8% air voids),
 - Varying requirements for longitudinal joints
- Increased Density Pavements target a 2% increase across the entire pavement!
 - Just 2% more... makes a huge difference!

DENSITY VS. PERMEABILITY 12.5 mm WEARING COURSE

asphalt institu

- Fatigue performance between 8.2 and 43.8%
- The rutting resistance by 7.3 to 66.3%
- Extend the service life by conservatively 10%."

- Promotes the bond between pavement layers
 - Prevents slippage between pavement layers
 - Vital for structural performance of the pavement
 - All layers working together
 - Seals all transverse & longitudinal vertical surfaces

Loss of Fatigue Life Examples

- May & King:
 - 10% bond loss = 50% less fatigue life
- Roffe & Chaignon
 - No bond = 60% loss of life
- Brown & Brunton
 - No Bond = 75% loss of life
 - 30% bond loss = 70% loss of life

Loss of Life

Everyone MUST be on the same page

asphalt institute

What we are talking about:

- Original Emulsion—undiluted emulsion consists of a paving grade binder, water, and an emulsifying agent.
- *Diluted Emulsion*—an emulsion that has been diluted with <u>additional</u> water.
 - Critical to sprayed control
 - 1:1 typical (Original Emulsion:Added Water)
- Residual Asphalt—the remaining asphalt after an emulsion has set typically 57-70 percent or Original Emulsion

What difference does it make?

To receive **Residual Asphalt** at **0.05 gal/yd²** using an emulsion with 60% residual asphalt, the contractor would need to apply:

0.083 gal/yd² of Original Emulsion or 0.167 gal/yd² of 1:1 Diluted Emulsion

What is going on and why?

asphalt institute

8–10 years est. Interstate Pavement

What The Worth It To Apply A Tack Coat?

Cost of Tack Coat

- New or Reconstruction
 - About 0.1-0.2% of Project Total
 - About 1.0-1.5% of Pavement Total Cost
- Mill and Overlay
 - About 1.0-2.0% of Project Total
 - About 1.0-2.5% of Pavement Total Cost

Cost of Bond Failure in Only the Top Lift

- Assume no inflation for materials
- Estimated traffic control
- Used project plans for thicknesses
- Used bid tabs for:
 - Milling
 - Material costs
 - Replaced pavement markings

30-100% of Original Pavement Costs

Common Tack Coat Questions

- What is the Optimal Application Rate?
 - Surface Type
 - Surface Condition
- Workshop Recommended Ranges

Surface Type	Residual Rate (gsy)	Appx. Bar Rate Undiluted [*] (gsy)	Appx. Bar Rate Diluted 1:1 [*] (gsy)
New Asphalt	0.020 - 0.045	0.030 - 0.065	0.060 - 0.130
Existing Asphalt	0.040 - 0.070	0.060 - 0.105	0.120 - 0.210
Milled Surface	0.040 - 0.080	0.060 - 0.120	0.120 - 0.240
Portland Cement Concrete	0.030 – 0.050	0.045 – 0.075	0.090 - 0.150

*Assume emulsion is 33% water and 67% asphalt.

asphalt institute

Tack Coat

Full width of mat to minimize movement of unsupported edge

Triple Lap Coverage

Spray Bar/Nozzles

Nozzle Selection

Common Tack Coat Question

• When to Re-Tack?

- Tracking
- Contamination

If in doubt ... Re-Tack

Generally Uniform Application

Missed Line

TIQUES

10

How To Build a Longitudinal Joint?

1 1 1 1 1

Photo: Carlos Rosenberger

Photo: Carlos Rosenberger

I-71 in Columbus, OH

Unsupported Edge Will Have Lower Density

Different Types of Longitudinal Joints

Mill & Pave One Lane at a Time

The Best Longitudinal Joint: Echelon Paving

New Jersey

BOMAG

HYPAC

Rolled Hot

HYPAC

Echelon Paving Longitudinal Joint

Joint passes between the quarters

But, the need to maintain traffic limits the opportunities to pave in echelon

Consequently, most longitudinal joints are built with a cold joint.

First Pass Must be Straight

Uniform head of material across entire screed to joint

...Do Not Overload Auger

Paint the Vertical Face

Good: Double Tack with Emulsion Better: PG Binder Best: Joint Adhesive

Overlap By 1-inch +/- ¹/₂ Inch

- If milled or cutback joint, then 0.5-inch
- Keep end plate flat
- Set automation to NEVER STARVE THE JOINT!
- Joint Matcher best (versus ski) to match exact amount of material needed at joint

Do NOT Rake Away From the Joint Asphalt institute

Lute the Longitudinal Joint

asphalt institute

AP-105

This lute person is doing a great job

Rolling Unsupported Edge?

Option 1 Hang over 4-6"

Option 2 1st Pass 4"-6" inside 4"-6" Roller

2nd Pass hang over 4"-6"

asphalt institute

Roller

"- 6″

What We Don't Want

asphalt institute

If edge of drum is located just inside the unsupported edge, a stress crack can occur here.

Rolling the <u>Confined</u> Edge:

1st pass all on hot mat with roller edge off joint approx 6-12 inches

asphalt institute

2nd pass overlaps on cold mat 3-6 inches

Frequently Done in AK and PA

Licensed Subcontractor ≈ 11 Trucks

asphalt institute

Balance the Mix Design

Smooth Quiet Ride Skid Resistance

Rut Resistance

Shoving

Flushing Resistant

Durability Crack Resistance Raveling Permeabilit y

DON'T ATTACK ONE HALF AT THE EXPENSE OF THE OTHER HALF!!

Cost of Compaction

- Least expensive part of the paving process
- Aggregates and binders are expensive in comparison
- Compaction adds little to the cost of a ton of asphalt

Lift Thickness' Effect on Compaction

- Aggregates need room to densify
- Too thin vs. NMAS leads to:
 - Roller bridging
 - Aggregate lockup
 - Aggregate breakage
 - Compaction Difficulties
- NCHRP Report 531 (2004)
 - Fine Graded Mix—Min Thickness = 3 X NMAS
 - Coarse Graded Mix—Min Thickness = 4 X NMAS
 - SMA Mix—Minimum Thickness = 4 X NMAS

Material Cooling

- Thicker = More Time for Compaction
- Free tools for estimating compaction time
 - PaveCool—single lift (generation 1)
 - PC
 - iOs App
 - Google App
 - MultiCool—multiple lifts (generation 2)
 - PC
 - Google App
 - Mobile Web

Vibratory Screed Should Always be "ON"

Note: screed operator walking along side

Roller Operations - Temperature Zones

Paver Speed and Output

asphalt institute

Feet/Minute

Establishing Rolling Pattern

Rolling Pattern

_____ 100 - 170 ft ____→

- Roller width should overlap 6 inches
- Odd number of passes to advance
- Repeat uniformly

Roller Speed is Critical

Slower = More Compaction/Pass

Drum Impacts per Foot

Frequency	2 MPH	3 MPH	4 MPH	5 MPH
2000 vpm	11.36	7.58	5.68	4.55
2200 vpm	12.50	8.33	6.25	5.00
2400 vpm	13.64	9.09	6.82	5.45
2600 vpm	14.77	9.84	7.39	5.91
2800 vpm	15.91	10.61	7.95	6.36
3000 vpm	17.05	11.36	8.52	6.82
3200 vpm	18.18	12.12	9.09	7.27
3400 vpm	19.32	12.88	9.66	7.72
3600 vpm	20.45	13.64	10.22	8.18
3800 vpm	21.59	14.39	10.80	8.63
4000 vpm	22.72	15.16	11.36	9.10

Additional Vibratory Rollers

Vibratory Rollers - Amplitude

- Amplitude too high
- Travel speed too fast
- Vibrating cool mat
 - Roll closer to paver

asphalt institute

- Damaged gutter
 - Roll along interface

Maximizing Our R.O.I.

- Infrastructure loads continue to rise
- Budget availability continues to fall
- Increased pavement life can be economically achieved
- Research shows a 10% increase in pavement life can be achieved by increasing compaction by 1%.

What would a 3% increase in compaction do for our industry?

Thank You!

Wayne Jones Senior Regional Engineer Asphalt Institute wjones@asphaltinstitute.org