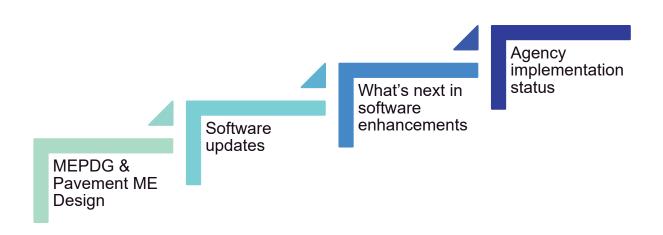
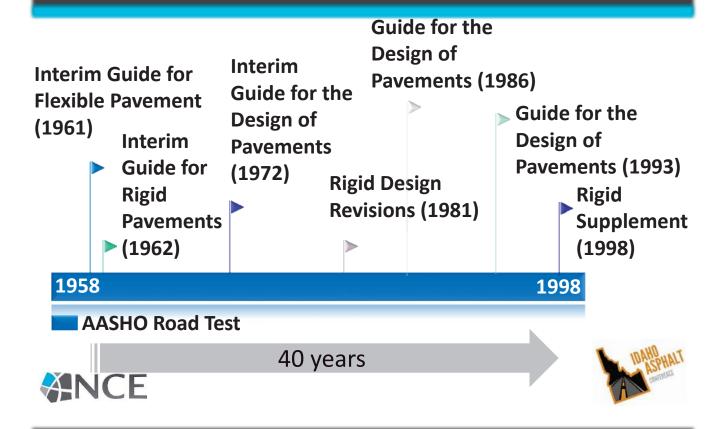
AASHTOWare Pavement ME Design™ Update


Linda Pierce, NCE

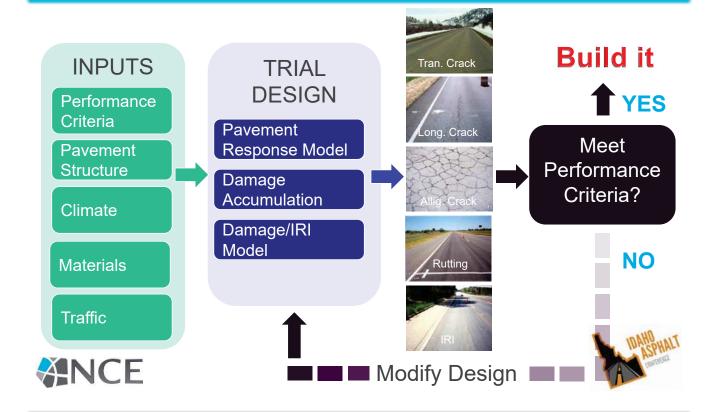
57th Annual Idaho Asphalt Conference Moscow, ID October 26, 2017


Discussion Topics

AASHO/AASHTO Pavement Design

NCHRP 1-37A

- 1998-2004
- Develop guide & software
- New & rehabilitated pavements
- Mechanistic-empirical based models
- Similar inputs
 - Traffic
 - Climate


Estimate damage & predict performance

- Materials

Design/Analysis Overview

Pavement Types

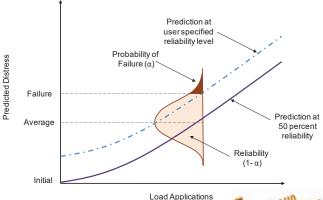
- Asphalt
 - New construction
 - Asphalt overlay
 - Concrete overlay
- · Semi-Rigid
 - New asphalt over chemically stabilized base
 - Asphalt overlay

- Rigid
 - New jointed plain
 - New continuously reinforced
 - Asphalt overlay
 - Concrete overlay
 - o Bonded
 - Unbonded
 - o Short jointed

Hierarchical Input Levels

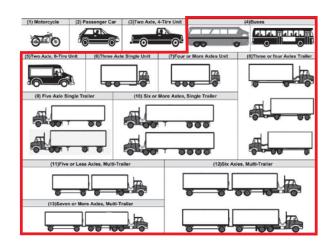
- Level 1
 - Based on measured values
- Level 2
 - Limited test results & correlations
- Level 3
 - Regional averages or expert opinion

Analysis is the same regardless of input level



Reliability

Probability that the predicted distress will be less than the critical distress over the design period


Functional Class	Urban	Rural
Interstate	95	95
Principal Arterial	90	85
Collector	80	75
Local	75	70

Traffic Characterization

- Axle load spectra
 - Class 4+ vehicles
 - Axle configuration
 - Axle weight
- Data collection
 - Weigh-in-Motion
 - Automated Vehicle
 Classification
 - Vehicle Count

Asphalt Materials

- Layer thickness
- Air voids
- Effective binder content
- Poisson's ratio
- · Unit weight
- Binder type
 - PG, viscosity, or penetration grade

- Creep compliance
- Dynamic modulus
- Reference temperature
- Indirect tensile strength
 - Correlated (level 3)
- Heat capacity
- Thermal conductivity

Concrete Materials

- Thickness
- Poisson's ratio
- Unit weight
- Coefficient of thermal expansion
- Heat capacity
- Thermal conductivity
- Aggregate type
- NCE

- Cementitious content
- Cement type
- Water/cement ratio
- · Curing method
- Reversible shrinkage
- · Zero-stress temp.
- Time 50% shrinkage
- Ultimate shrinkage
- Strength

Input Levels 1-3

Base Material Types

- Asphalt
- Concrete
- Chemically stabilized
 - Cement
 - Lime cement
 - Lime fly ash
 - Lime stabilized
 - Soil cement

- Sandwiched granular
- Non-stabilized
 - A-1-a to A-3
 - RAP (plant & in-place)
 - Crushed gravel
 - Crushed stone
 - Permeable aggregate
 - River-run gravel

Base Materials

- Thickness
- Poisson's ratio
- Coefficient of lateral earth pressure
- Resilient modulus
- Gradation
- Plasticity Index
- Liquid Limit

Foundation

Type

- Subgrade
 - A-1-a to A-7-6
- Bedrock
 - Highly fractured & weathered
 - Massive continuous

Inputs

- Thickness
- Poisson's ratio
- Coefficient of lateral earth pressure
- Resilient modulus
- · Gradation, PI, PL

Climate

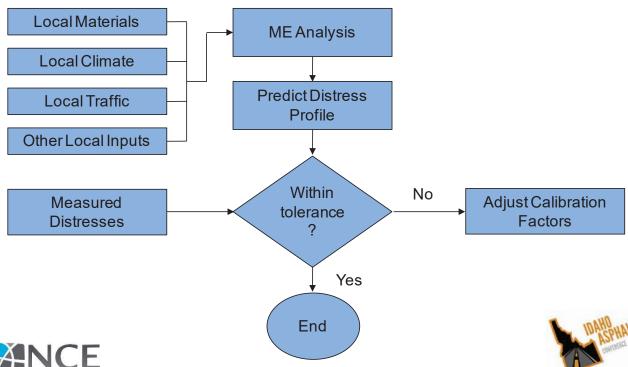
- Temperature
 - Asphalt
 - Fatigue cracking, thermal cracking, & rutting
 - Concrete
 - Slab cracking & faulting (JPCP) & punchouts (CRCP)
- Freeze/Thaw
 - JPCP performance

- Relative Humidity
 - Moisture gradients JPCP & CRCP
- Seasonal Variation
 - Resilient modulus
- Moisture Content
 - Rutting unbound layers

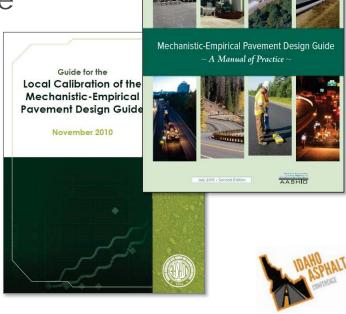
Performance Prediction

- Predict performance at any point in time
- Asphalt
 - IRI
 - Rutting
 - Cracking
- Semi-Rigid
 - IRI
 - Rutting
 - Cracking
- ▲Top down **Fatigue Thermal**
- Reflection

- Plain Jointed Concrete
 - IRI
 - Slab cracking
 - Faulting
- Continuously Reinforced Concrete
 - IRI
 - Punchouts


Characterizing Existing

- Pavement condition surveys
- Core samples
 - condition, thickness, material testing
- Soil borings
 - Subgrade modulus, depth to stiff layer
- Other
 - Ground penetrating radar, seismic analysis of surface waves, impact echo


Local Calibration

AASHTO Products

- Manual of Practice
- Calibration Guide
- Software

Software Updates

- 2015 (v2.2)
 - Drainage Requirements in Pavements
 - MapME
 - Level 1, 2, & 3 inputs applicable for PCC& AC overlays of asphalt pavements
 - Reflection cracking model
 - Concrete pavement global re-calibration
 - Plastic deformation for each asphalt layer

Software Updates (continued)

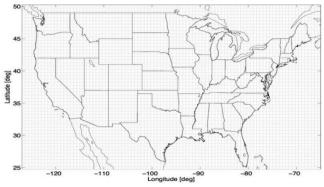
- 2016 (v2.3)
 - Code modernization & review
 - Technical audit
 - Bonded concrete overlay design
 - North American Regional Re-analysis climate database
 - o 1083 locations
 - o 37 years continuous data

Software Updates (continued)

- 2017 (v2.4)
 - Correct unbound layer rutting model
 - Backcalculation tool
 - o Pre-processing
 - Stiffness value determination
 - o Post processing results
 - Revisions based on technical audit

Software Updates (continued)

- January 2018 (v2.5)
 - Manual of Practice integration
 - Tran. crack access to inputs/outputs
 - Access to dynamic modulus calculations
 - Modern-Era Retrospective Analysis for Research & Applications data
 - Continuous hourly estimate of all climaterelated data (NASA)
 - Re-calibrate flexible & semi-rigid models


LTPP vs MERRA

PaveME weather database

MERRA grid points

31 mi x 37 mi grid

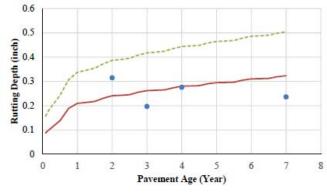
Software Updates (continued)

- July 2018 (v2.6)
 - Report customization
 - Input comparison filter tool
 - Maintenance strategy tool
 - Level 1 tensile strengthTransverse crack prediction

Asphalt Pavements

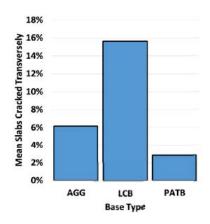
Cold milling Microsurfacing Thin/ultra thin overlays Hot in-place recycling

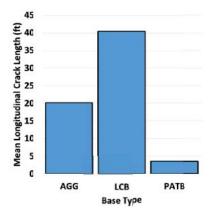
Concrete Pavements


Diamond grinding Thin/ultra thin overlays

What's Next?

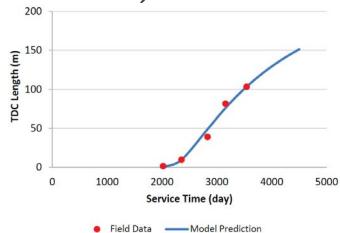
- Influence of Geosynthetics on Pavement Performance
 - (NCHRP 1-50)
 - Unbound base layers
 - Planned for FY 2019


Measured ——Predicted Geosynthetic-reinforced ——Predicted Control



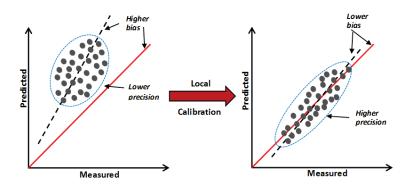
What's Next? (continued)

 Slab/Underlying Layer Interaction in Concrete Pavements (NCHRP 1-51)


- Planned for FY 2019

What's Next? (continued)

- Top-Down Cracking in Asphalt Pavements (NCHRP 1-52)
 - Anticipated completion by end of 2017
 - Planned for FY 2019

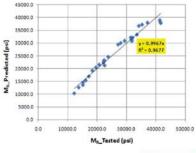


What's Next? (continued)

- Automated Local Calibration Tool
 - Significant agency challenge (time & \$)
 - o Section selection and data assembly
 - o Potentially thousands of software iterations
 - Planned for FY 2019

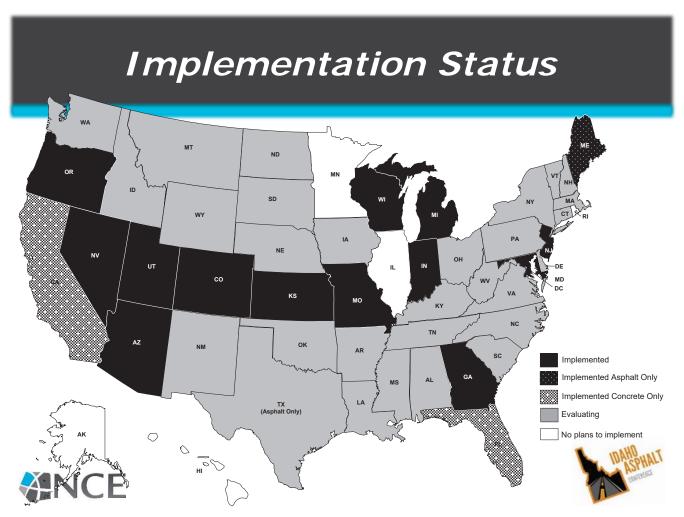
What's Next? (continued)

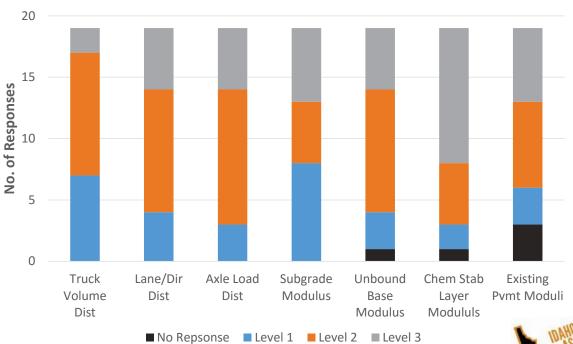
- Material Properties of CIP & Full-Depth Reclamation (NCHRP 9-51)
 - Software Addendum planned after release of final report



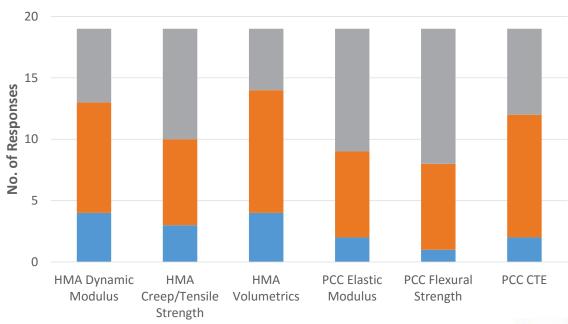
What's Next? (continued)

- Influence of Subgrade/Unbound Layers (NCHRP 1-53)
 - Anticipated completion June 2018
 - Planned for FY 2020

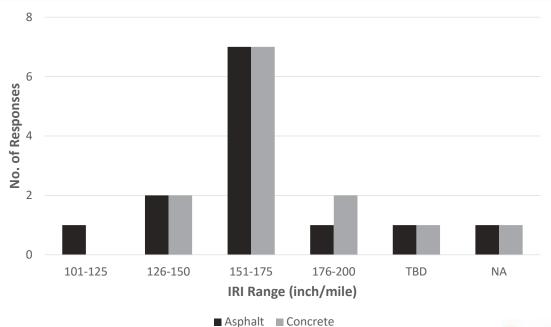



Testing NCE

Existing Pavements

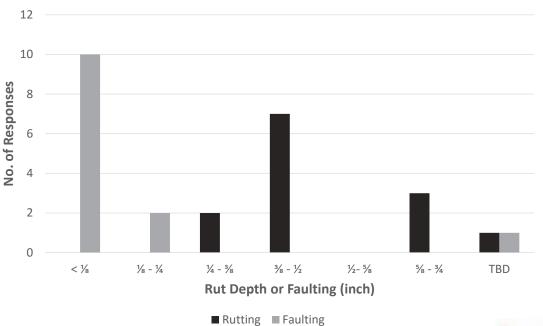

Input Levels

Input Levels (continued)



■ Level 1 ■ Level 2 ■ Level 3


Performance Thresholds


Thresholds (continued)

Thresholds (continued)

Implementation Challenges

- Local calibration
- Designing pavements with features not included or have not been calibrated
- Material characterization (all layers)
- Traffic characterization
- Availability of performance data to verify/calibrate prediction models

User Group Meeting

- FHWA Transportation Pooled Fund
 - Conduct meetings
 - o Information sharing
 - o Identify implementation issues
 - o Identify research needs
 - Organize regional/national implementation efforts

User Group Meeting (continued)

- Annual Meeting Dates
 - 1. December 14-15, 2016 Indianapolis
 - 2. October 11-12, 2017 Denver
 - 3. Sep/Oct/Nov 2018 Nashville

http://www.pooledfund.org/ Details/Study/549

Questions?

Linda Pierce Principal <u>lpierce@ncenet.com</u> 505.603.7993

