

Use of Visual Distress Survey and Deflection Data for Rehabilitation Decisions in Idaho

Use of Visual Distress Survey Data and Deflection Basin Parameters for Network-Level Pavement Rehabilitation Decisions in Idaho

96th Annual Meeting of the Transportation Research Board

<u>Author:</u> Deb Mishra, Ph.D., P.E. Assistant Professor Dept. of Civil Engineering Boise State University

<u>Co-Author:</u> Md. Fazle Rabbi Grad. Research Assistant Dept. of Civil Engineering Boise State University

<u>Co-Author:</u> John Arambarri, PE, Materials Engineer, District 3 ITD <u>Co-Author:</u> Dan Harelson, PE, Engineering Manager, District 5 ITD

Project Background and Scope

"Over the year the transportation department has routinely repaired the pavement but even with this routine maintenance the pavement has reached the end of its life; it's time to invest in a new surface".

> -Dan Harelson, ITD project manager

- Total length of I-15 In Idaho= 190 mils
- Replacing around 44 miles

Project		P	roject Ler	igth	
No	Start	End	Start	End	Length
1	Arimo Interchange	McCammon Interchange	39.8	47.5	7.7
2	Baseline	Bonneville	106.7	111.9	5.2
3	Chubbuck	Milepost 76.01	72.6	76.01	3.4
4	Lava Bed crosover	Baseline road	100.4	106.7	6.3
5	McCommon Interchange	South 5th Pocatello	47.5	66.8	19.3
6	Milepost 76.01	Burns Road	76.01	81.9	5.9
7	South Blackfoot	west Blackfoot	89.3	92.5	3.2
8	Sand Road	Blackfoot	85.6	89.3	3.7
9	West Blackfoot	Lava Beds	92.5	100.4	7.9

57th Idaho Asphalt Conference October 26, 2017, Moscow, Idaho Several sections were initially selected for Full-Depth Reclamation (CRABS); In-Depth Analysis of Structural Condition can lead to more educated decisions

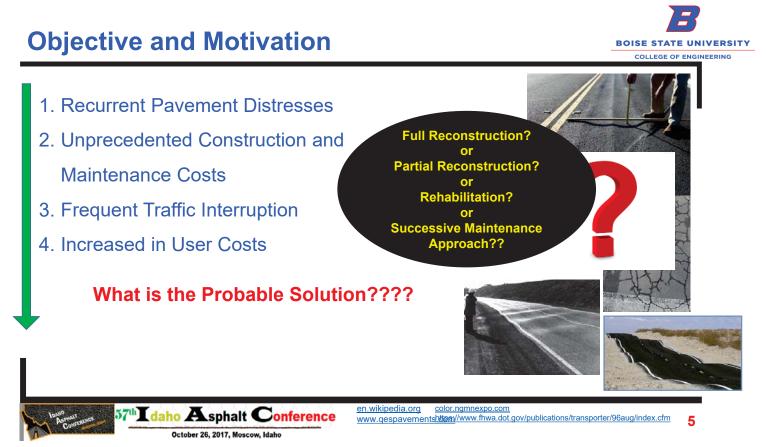
Pavement Sections Analyzed

Projects: (District -3) Thank you John Arambarri!

- 1. US-95 Payette NCL to Weiser River Bridge
 - MP 70.28 to 81.52
- 2. SH-55 Pride Lane to Middleton Road
 - MP 7.1 to MP 15.6
- 3. I-84, Sand Hollow to Caldwell
 - MP 17 to MP 26

Projects: (District -5)

- 1. I-15, Sand Road to South Blackfoot
 - MP 85.6 to MP 89.3



Construction

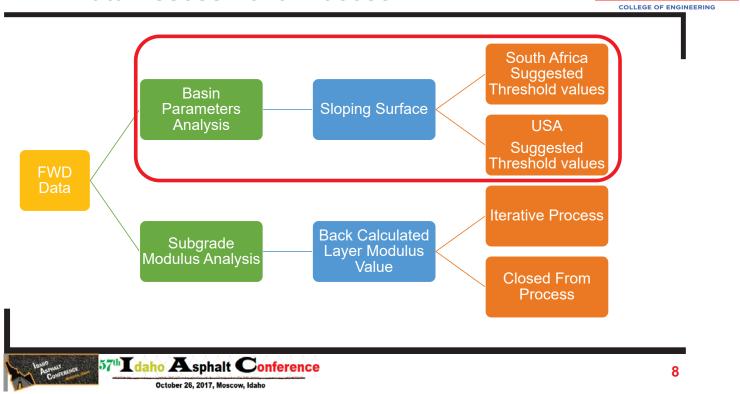
I-15

Functional vs. Structural Pavement Evaluation

Surface Pavement Surface and Subgrade Evaluation Assessment for Design Assessment and Evaluation purpose Maintenance Functional Evaluation Structural Evaluation Purpose Present Serviceability Non-Destructive Testing Destructive Testing Index Pavement Static Creep Deflection Flexible Rigid Roughness Index Pavements Pavement Method **Cost Efficient** Noninvasive Crushing Strength, flexural strength Coring/Bitumen Steady State Rapid Skid Resistance Extraction Deflections 1 Limited Traffic **Comparatively Expensive** Х Obstruction Wave Х **Time Consuming** propagation Method Х Labor-Intensive Х **Traffic Interruption** Х **Discontinuous Assessment** Loading Damage to pavements Х 57th Idaho Asphalt Conference 6 October 26, 2017, Moscow, Idaho

FWD (Impulse Loading Devices)

Falling Weight Deflectometer (FWD) is widely used to


- measure pavement surface deflections
- FWD measures surface deflections by an impact loading to simulate a vehicular moving load.
- The system applies controlled loading and measures deflections.

Advantages:

- ✓ Comparatively Fast
- ✓ Economical

57thIdaho Asphalt Conference October 26, 2017, Moscow, Idaho

FWD Data Assessment Process

Dropping Weight

Deflection S

305

24 610 36 914

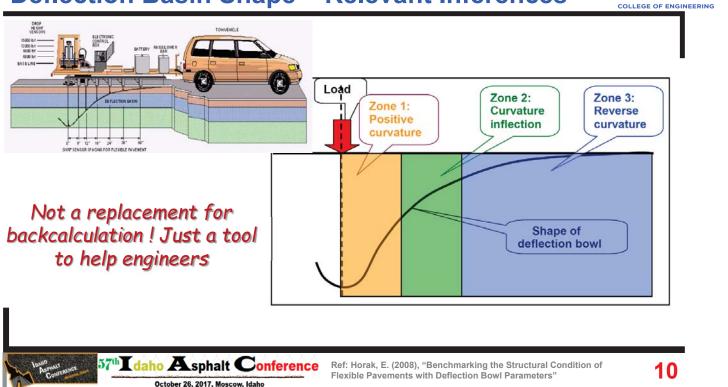
BOISE STATE UNIVERSITY

(in) Radial

Deflection Bowl

60 1524

72 1829


Backcalculation – A Challenge

- ✓ Very powerful concept needs good understanding of the procedure
- ✓ Pavement layer thicknesses Important Input
- ✓ Not something that DOTs do on a daily basis

Is it possible to utilize FWD data at a network level without going through detailed back-calculation approaches?

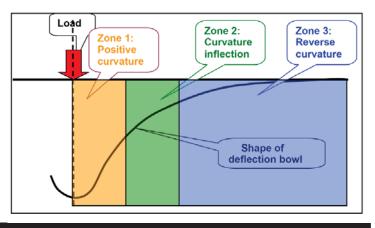
Deflection Basin Shape – Relevant Inferences

BOISE STATE UNIVERSITY COLLEGE OF ENGINEERING

BOISE STATE UNIVERSITY

Deflection Basin Parameters Used in the US

Surface Curvatutre Index (SCI) (also known as Base Layer Index, BLI) $SCI = D_0 - D_{300}$


Middle Layer Index (MLI) (also known as Base Damage Index, BDI) $MLI = D_{300} - D_{600}$

Lower Layer Index (LLI) (also known as Base Curvature Index, BCI)

 $LLI = D_{600} - D_{900}$

Different Countries; Different Names

57thIdaho Asphalt Conference October 26, 2017, Moscow, Idaho Shape of the deflection basin is governed by structural condition of individual pavement layers

Ref: Horak, E. (2008), "Benchmarking the Structural Condition of Flexible Pavements with Deflection Bowl Parameters"

Deflection Bowl Parameters - South African Practice

Parameter	Formula	Structural indicator	
Maximum Deflection	D_o as measured	ALL Layers	
Radius of Curvature	$RoC = \frac{L^2}{2 \times D_0 \left(1 - \frac{D_0}{D_{200}}\right)}$	Surface and	
(RoC)	L = 200 mm (for FWD)	Base Layer	
Base Layer Index		Base Layer	
(BLI)	$BLI = D_0 - D_{300}$	Dase Layer	
Middle Layer Index		Subbase/	
(MLI)	$MLI = D_{300} - D_{600}$	Subgrade Layer	
Lower Layer Index		Subbase/	
(LLI)	$MLI = D_{600} - D_{900}$	Subgrade Layer	

Ref: Horak, E., Emery, S., & Maina, J. Review of Falling Weight Deflectometer Deflection Benchmark Analysis on Roads and Airfields. In Proc. 11th Conf. on Asphalt Pavements for Southern Africa.

Deflection Bowl Parameters and Thresholds

Base Type	Structural Condition		Deflection B	owl Paramete	ers (700 kPa)	
	Rating	Do (µm)	RoC (m)	BLI (µm)	MLI (µm)	LLI (µm)
	Sound	< 625	> 90	< 250	< 115	< 65
Granular Base	Warning	625 to 925	42-90	250-475	115-225	65-120
	Severe	> 925	< 42	> 475	> 225	> 120

Need to use consistent FWD load levels

Idaho Uses a Load Level of 12 kips for FWD Testing

57thIdaho Asphalt Conference

Ref: Horak, E., Emery, S., & Maina, J. Review of Falling Weight Deflectometer Deflection Benchmark Analysis on Roads and Airfields. In Proc. 11th Conf. on Asphalt Pavements for Southern Africa.

Deflection Bowl Parameters & Thresholds

Deflection Basin	Parameters Range	Remarks
	< 4.00	Very Good Asphalt Layer
	4.00 - 6.00	Good Asphalt Layer
CI / BLI (mils)	6.00 - 8.00	Fair Asphalt Layer
	8.00 - 10.00	Poor Asphalt Layer
	> 10.00	Very Poor Asphalt Layer
	< 2.00	Very Good Base Layer
	2.00 - 3.00	Good Base Layer
MLI (mils)	3.00 - 4.00	Fair Base Layer
	4.00 - 5.00	Poor Base Layer
	> 5.00	Very Poor Base Layer
	< 1.00	Very Good Subgrade Layer
	1.00 - 1.14	Good Subgrade Layer
W ₆₀ (mils)	1.40 - 1.80	Fair Subgrade Layer
JU , ,	1.80 - 2.20	Poor Subgrade Layer
	> 2.20	Very Poor Subgrade Layer

 Conference
 Ref: Chang C, D. Saenz , S. Nazarian, I. N. Abdallah, A. Wimsatt, T. Freeman, and

 E. G. Fernando (2014) "TxDOT Guidelines to Assign PMIS Treatment Levels"
 14

 Itaho

Parameter	Formula	Structural indicator
Maximum Deflection	D _o as measured	ALL Layers
Radius of Curvature (RoC)	$RoC = \frac{(L)^2}{2Do(1-\frac{Do}{D200})}$ L= 200mm (FWD)	Surface and Base Layer
Base Layer Index (BLI)	BLI=D _o - D ₃₀₀	Base Layer
Middle Layer Index (MLI)	MLI=D ₃₀₀ - D ₆₀₀	Subbase/ Subgrade Layer
Lower Layer Index (LLI)	LLI=D ₆₀₀ -D ₉₀₀	Subbase/ Subgrade Layer

Structural Evaluation of I-15, I-84, SH-55 & US-95 Sections using Deflection Basin Parameters

Different Pavement Sections Considered

- 1. US-95 Payette NCL to Weiser River Bridge
 - MP 70.28 to 81.52
 - FWD data collected in 2011
- 2. SH-55 Pride Lane to Middleton Road
 - MP 7.1 to MP 15.6
 - FWD data collected on 29 June 2016
- 3. I-84, Sand Hollow to Caldwell
 - MP 17 to MP 26
 - FWD data collected on 14 October 2015
- 4. I-15, Sand Road to South Blackfoot
 - MP 85.6 to MP 89.3
 - FWD data collected on 15 June 2011

57th Idaho Asphalt Conference October 26, 2017, Moscow, Idaho Where: d_{0n} = Normalized deflection

do

 $L_{\rm norm}$ = Normalized load

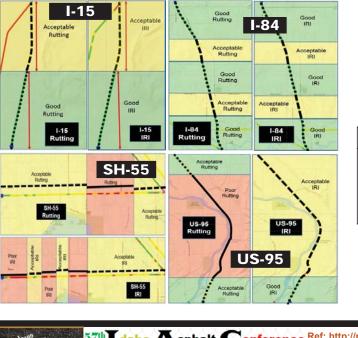
 $d_{0n} = \left(\frac{L_{norm}}{L_{ont}}\right) d_0$

- $L_{\text{applied}} = \text{Applied load}$
 - = Measured deflection at selected sensor location

Normalized to "12000" lb Load

BOISE STATE UNIVERSITY COLLEGE OF ENGINEERING

[1]


15

BOISE STATE UNIVERSITY COLLEGE OF ENGINEERING

Condition Assessment Based on Rutting and International Roughness Index (IRI)

Ru	tting Index
Category	Rut Depth (in.)
Excellent	< 0.25
Good	0.25037
Fair	0.38-0.50
Poor	>0.50

	Classification Based on IRI											
	Criteria	Classification										
IRI	IRI ≤ 95	Good										
Range	95 ≤ IRI ≤170	Fair / Acceptable										
	IRI >170	Poor / Not Acceptable										

Identifying the "source" of the problem is important for the selection of suitable rehabilitation measures

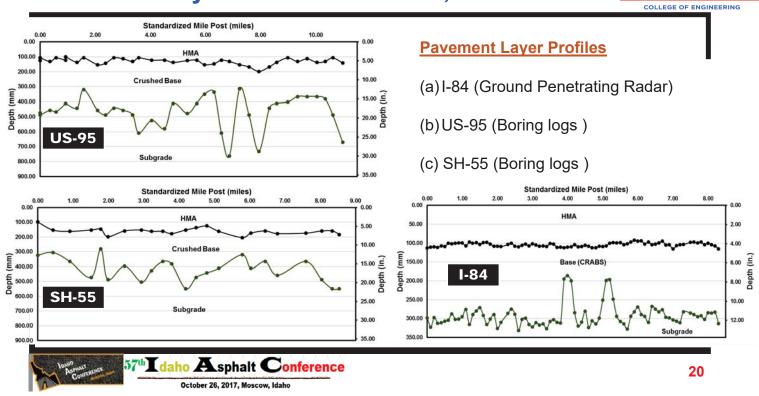
 Image: Conference
 Ref: http://pathweb.pathwayservices.com/idaho/) (edited)

 October 26, 2017, Moscow, Idaho

18

BOISE STATE UNIVERSITY

17

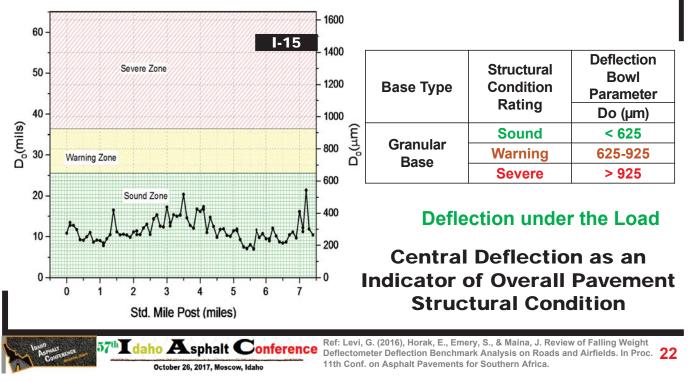

1

Threshold Values used to Classify Pavements Based on Distress Extent and severity BOISE STATE UNIVERSITY

									Condition: Crack	king Index		
									Pavement Condition	Functional Class		
Distress Type			Dist	ress Severi	ty / Magn	itude			Pavement Condition	Interstate and Arterials		
Pavement		15		84		6-95	61	-55	Good	CI > 3.0		
Section	-	15	1-	04	00	-95	31	-55	Fair	2.5 ≤ CI ≤ 3.0		
	Value	Rating	Value	Rating	Value	Rating	Value	Rating	Poor	2.0 ≤ CI ≤ 2.5		
Cracking Index	2.6	Fair	3.8	Good	2.2	Poor	1.6	Poor	Very Poor	CI < 2.0		
International			56		90.5		156		Condition: Rough	ness Index		
Roughness	< 95	Good	avg.)	Excellent	90.5 (avg.)	Good	(avg.)	Poor	Pavement Condition	Functional Class		
Index (IRI, in/mi)			(avg.)		(avg.)		(avy.)		Pavement Condition	Interstate and Arterials		
Roughness	3.40	Good	3.95	Good	3.33	Good	2.51	Fair	Good	RI > 3.0		
Index (RI)	3.40	Good	3.95	Good	3.33	Good	2.51	Fair	Fair	2.5 ≤ RI ≤ 3.0		
Average Rut	0.43"	E a la	0.04"	Oracl	0.40"	E a in	0.04"	Quart	Poor	2.0 ≤ RI ≤ 2.5		
Depth (inch)	0.43	Fair	0.24"	Good	0.46"	Fair	0.24"	Good	Very Poor	RI < 2.0		
*The data was ta	aken from	ITD's visu	al distres	s survev da	atabase.				Condition: R	tting		
IRI values for the				,		ed from re	ports pred	pared by	Pavement Condition	Functional Class		
ITD. IRI values f								-	Favement Condition	Interstate and Arterials		
									Good	0.00" - 0.24"		
									Fair	0.25" – 0.49"		
									Poor	0.50" - 0.74"		
									Very Poor	≥ 0.75"		
									Condition: IRI (i	nch/mile)		
									Pavement Condition	Functional Class		
									Pavement Condition	Interstate and Arterials		
									Excellent	<60		
									Good	60-99		
									Fair	100-139		
			-	o A s	$\land \land \land$		<u> </u>	Δ	Poor	140-199		

Pavement Layer Profiles of US-95, SH-55 & I-15 BOISE STATE UNIVERSITY

October 26, 2017, Moscow, Idaho

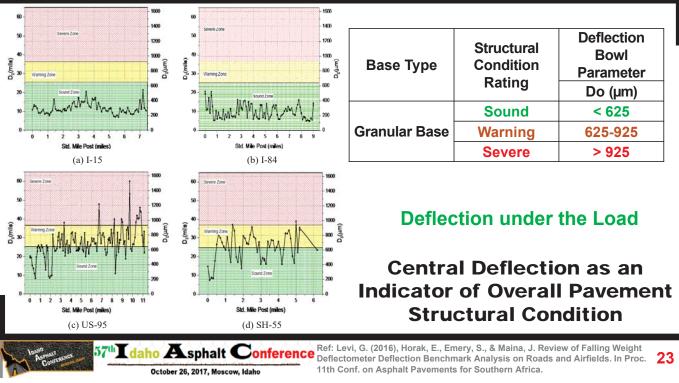

COLLEGE OF ENGINEERING

Inferences based on Deflection Basin – Zone 1 COLLEGE OF ENGINEERING COLLEGE OF ENGINEERING CUrvature inflection Inferences based on Shape of Stress Dissipation Curve

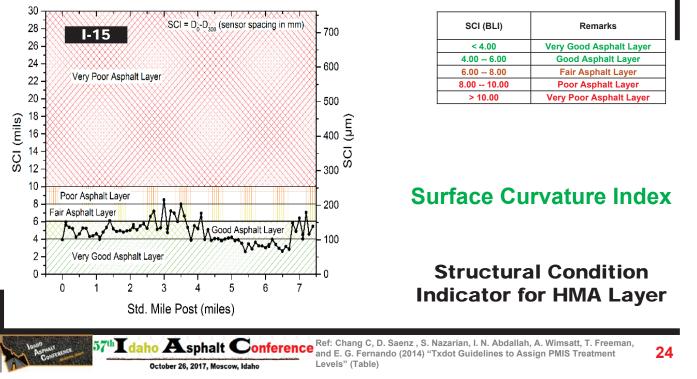
Shape of deflection bowl

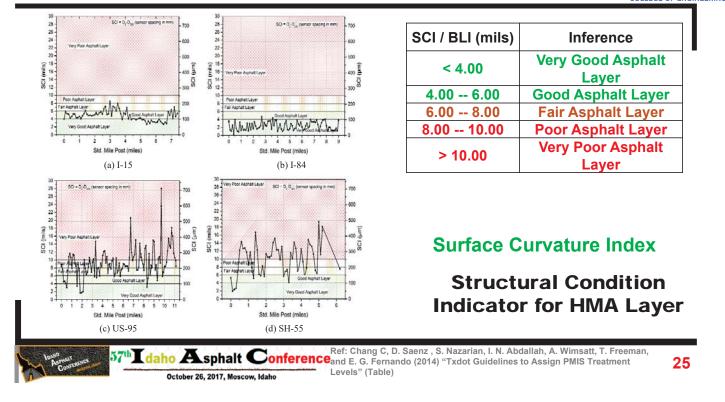
Pavement Assessment Based on Deflection Bowl Parameters

Base Sub-base Selected layers

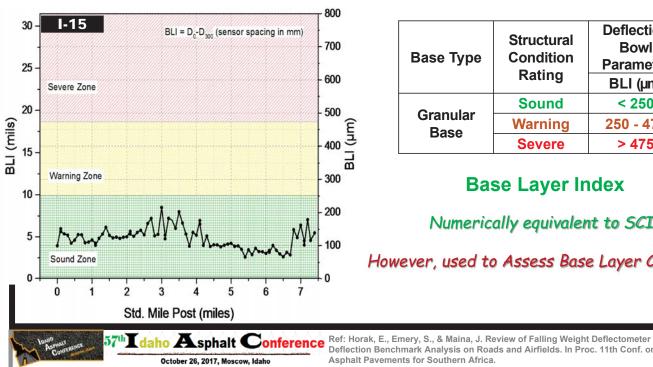

Subgrade

21


Z = r


 45^{0}

Zone of influence

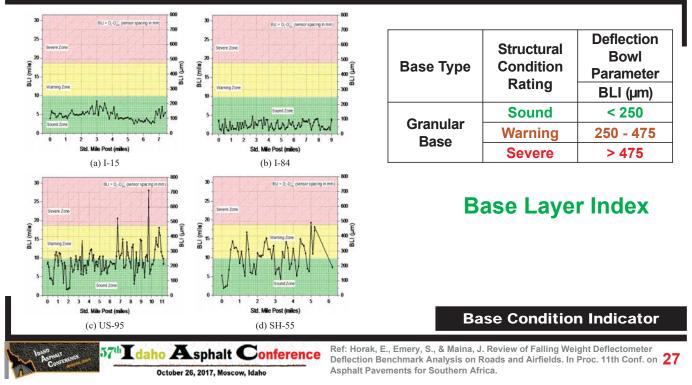


Pavement Assessment Based on Deflection Bowl Parameters

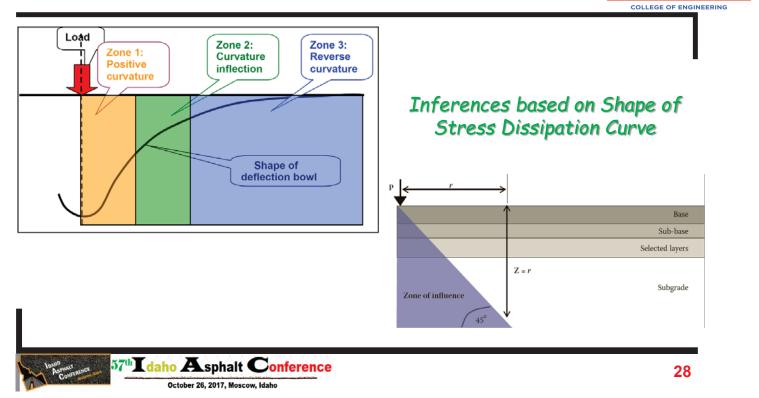
Pavement Assessment Based on Deflection Bowl **Parameters**

Base Type	Structural Condition Rating	Deflection Bowl Parameter BLI (µm)		
Orrentar	Sound	< 250		
Granular Base	Warning 250 - 4			
Dase	Severe	> 475		

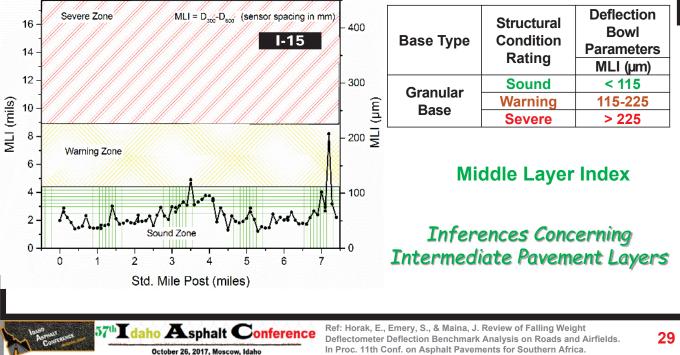
Base Layer Index


Numerically equivalent to SCI

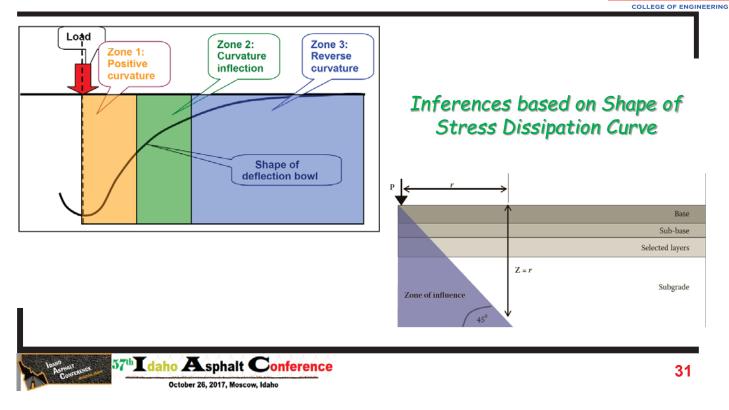
However, used to Assess Base Layer Condition


26 Deflection Benchmark Analysis on Roads and Airfields. In Proc. 11th Conf. on Asphalt Pavements for Southern Africa.

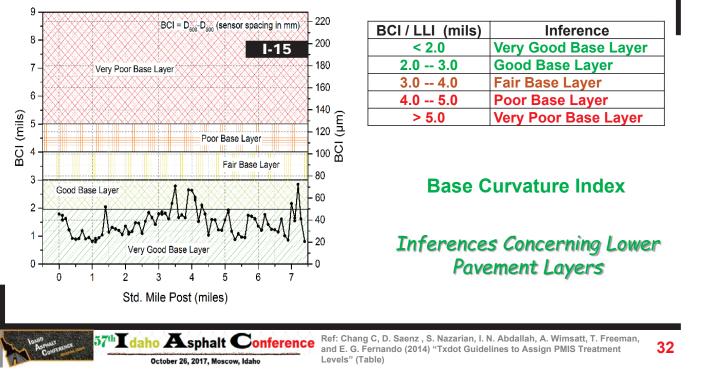
13



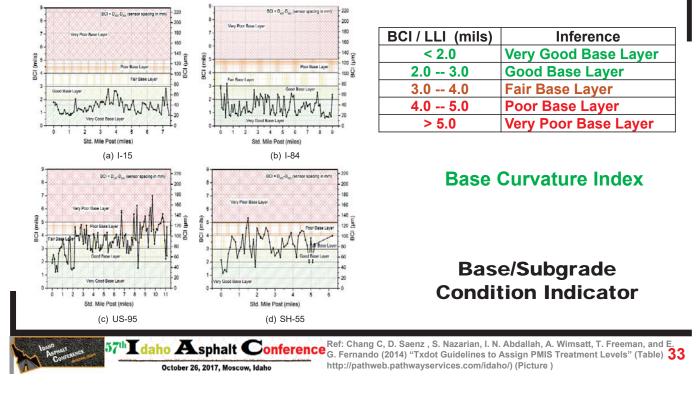
Inferences based on Deflection Basin – Zone 2 BOISE STATE UNIVERSITY



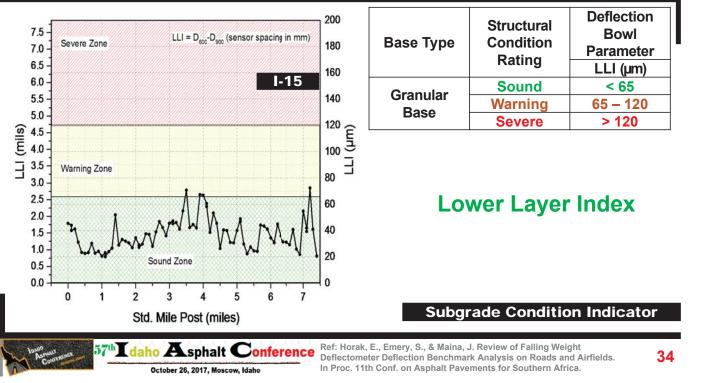
Pavement Assessment Based on Deflection Bowl Parameters

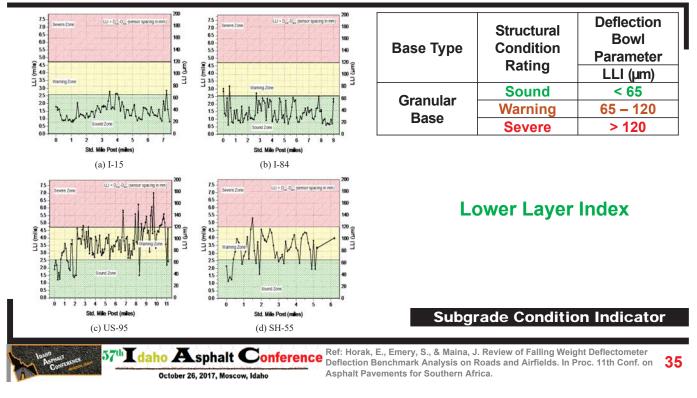

MLI = D- D 16 Deflection 14 14 Structural 12 12 Bowl 300 MLI (mils) [®] 01 Condition **Base Type** MLI (mils) (mm) 10 (m **Parameters** 200 1 200 Rating 8 MLI (µm) Sound < 115 Granular Warning 115-225 Base **Severe** > 225 Std. Mile Post (m Mile Post (miles) (a) I-15 (b) I-84 MLI = D - D (sensor 16 16 00 14 14 **Middle Layer Index** 12 12 inn (slim) (mr) (mr) 200 W (mils) (mrl) 10 8 N F MLI (ML 2 Std. Mile Post (miles) Std. Mile Post (miles) (c) US-95 (d) SH-55 Ref: Horak, E., Emery, S., & Maina, J. Review of Falling Weight Deflectometer daho Asphalt Conference Deflection Benchmark Analysis on Roads and Airfields. In Proc. 11th Conf. on 30 Asphalt Pavements for Southern Africa. October 26, 2017, Moscow, Idaho

Inferences based on Deflection Basin – Zone 3 BOISE STATE UNIVERSITY

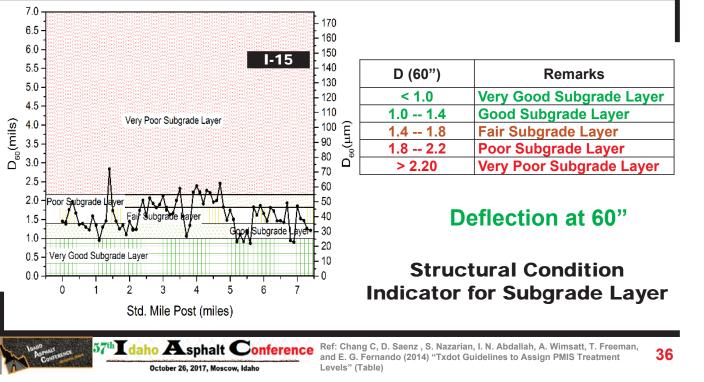


Pavement Assessment Based on Deflection Bowl Parameters

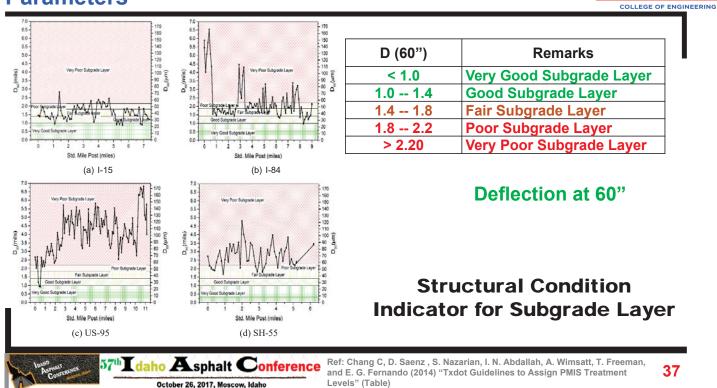




BOISE STATE UNIVERSITY COLLEGE OF ENGINEERING



Pavement Assessment Based on Deflection Bowl Parameters



Pavement Assessment Based on Deflection Bowl Parameters

Summary of Assessment Results

COLLEGE OF ENGINEER										
			e	erity / Magnitud	Distress Sev	l			stress Type	
		SH-55	95	US-	-84		I-15		Pavement Section	
	Rating	Value R	Rating	Value	Rating	Value	Rating	Value		
	Poor	1.6	Poor	2.2	Good	3.8	Fair	2.6	acking Index	
Rehabilitation	Poor	156 (avg.)	Good	90.5 (avg.)	Excellent	56 (avg.)	Good	< 95	iternational ness Index (IRI, in/mi)	
method should be selected	Fair	2.51	Good	3.33	Good	3.95	Good	3.40	ness Index (RI)	
based on detailed	Good	0.24"	Fair	0.46"	Good	0.24"	Fair	0.43"	age Rut Depth (inch)	
analysis of			VD Data	sessed from FV	Condition As	Structural			stress Type	
individual laye conditions	5	SH-55	95	US-9		I-84		I-15	vement ection	
	Rating	Percentage in Length	Rating	Percentage in Length	Rating	Percentage in Length	Rating	ntage in ngth		
	POOR	60	POOR	65	GOOD	100	GOOD	80	urface	
	GOOD	40	GOOD	40	GOOD	95	GOOD	00	Base	
	POOR	65	POOR	75	POOR	25	POOR	25	bgrade	

57thIdaho Asphalt Conference

October 26, 2017, Moscow, Idaho

19

BOISE STATE UNIVERSITY

BOISE STATE UNIVERSITY

Summary of Assessment Results Layer I-15 **I-84 US-95 SH-55** WARNING **Surface** Base Subgrade

BOISE STATE UNIVERSITY COLLEGE OF ENGINEERING

Caution

39

Research Outcome

Research Does Pay Off!

...collaboration between one of their (ITD D5) engineers and Boise State University will result in a savings of at least five million dollars from the original cost of the projects. Dan Harelson ... asked Dr. Deb Mishra from Boise State University to review the consultant prepared pavement investigation report for the project and Dr. Mishra evaluated the data using a tool he has developed ... he concluded that the consultant evaluation was extremely conservative and that much less costly rehabilitation options are available. Dan and Dr. Mishra applied the analysis to several additional projects and reached the same conclusion in their regard. The analysis will result in a savings of over five million dollars ...

Report to Idaho Legislators

57thIdaho Asphalt Conference October 26, 2017, Moscow, Idaho

CIR Implementation on I-15

-15 ARIMO TO MCCAMMON PROJECT

POCATELLO

MCCAMMON

ARIMO

October 26, 2017, Moscow, Idaho

30

Flying J

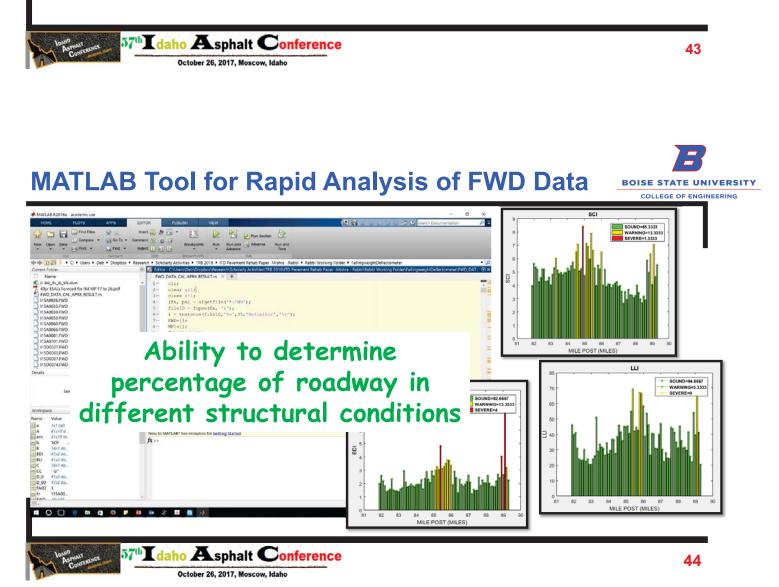
DOWNLOAD THE I-15 APP

JUNE - FALL 2017

"We are not bothering the traveling public as much and creating a road for cheaper that's actually goanna last Hall to Burns Road Ionger"---Scott Redding, ITD Resident Engineer Inkom Bridges imo to McCar 57th I daho Asphalt Conference 42

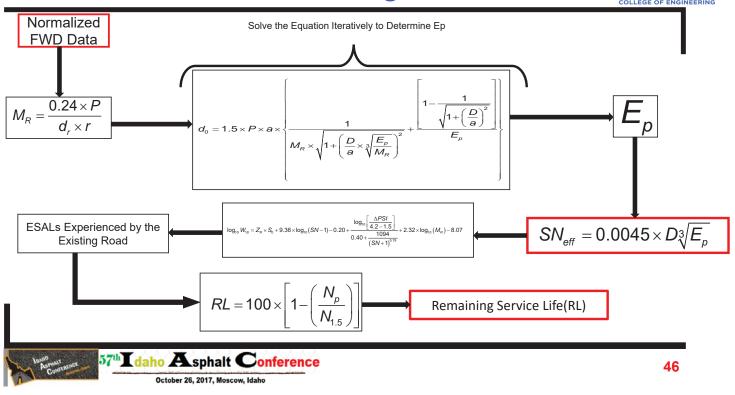
BOISE STATE UNIVERSITY COLLEGE OF ENGINEERING

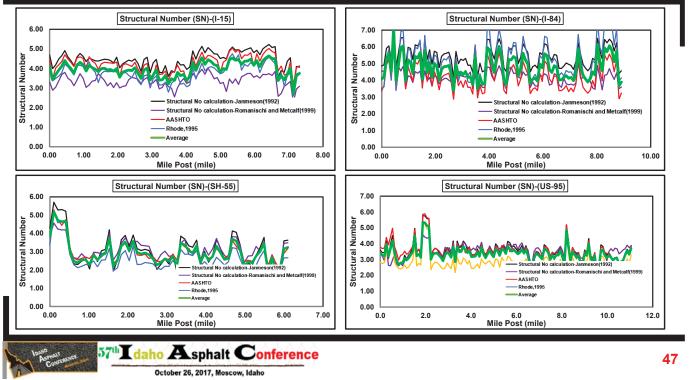
Construction


Osgood Ramp Exi

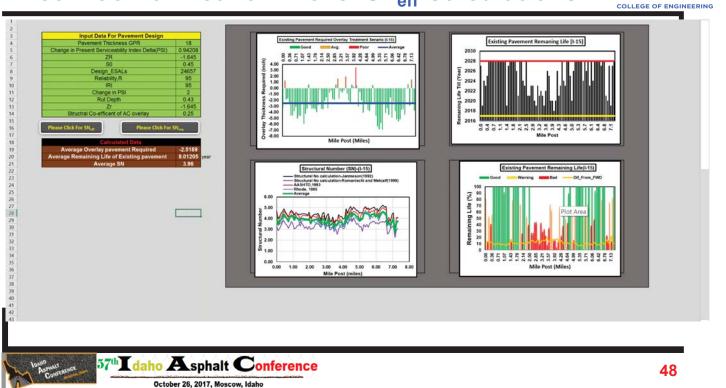
Idaho Falls Bride

I-15-


Developing a Tool for "Quick" Implementation



Structural Number & Remaining Life Calculation Sise STATE UNIVERSITY COLLEGE OF ENGINEERING



BOISE STATE UNIVERSITY COLLEGE OF ENGINEERING

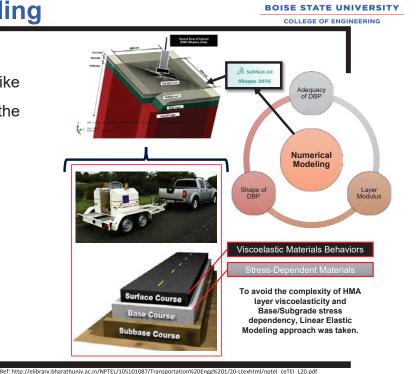
Sample Representation of Network-Level Pavement Condition

Excel Tool for Network-Level Sn_{eff} Calculations

BOISE STATE UNIVERSITY

Mechanistic Validation of Deflection Basin Parameters using Finite Element Modeling

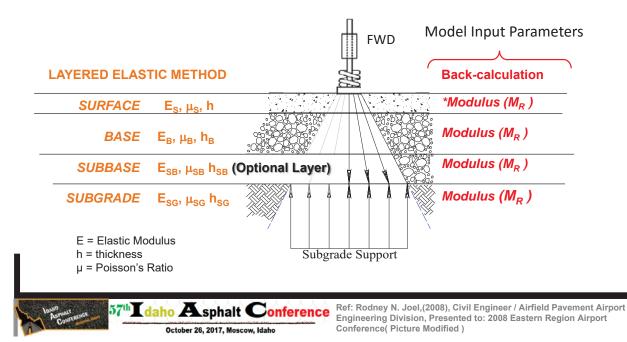
Numerical Pavement Modeling


Pavement Modeling Purpose:

To determine the pavement responses like stresses, strains, and deflections due to the application of load.

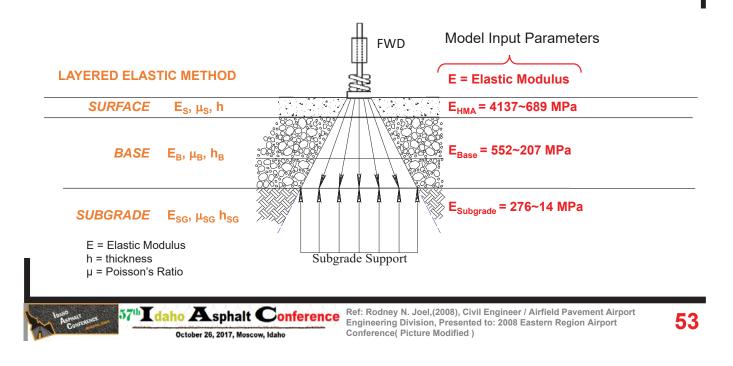
The common structural models:

- □ Layered Elastic Models (All layers)
- □ Visco-Elastic Modeling. (HMA layer)
- Stress-Dependent Modulus (Base and Subgrade layers)



49

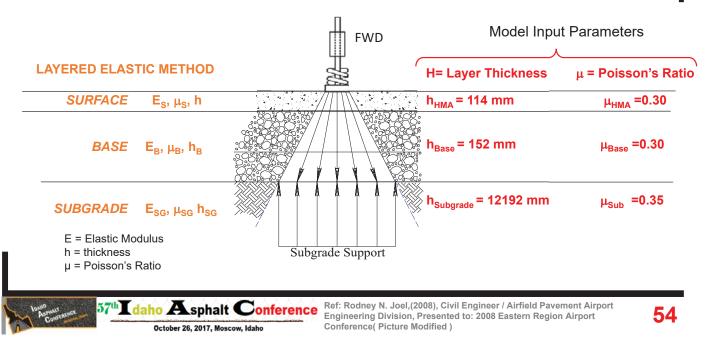
Flexible Pavement Typical Layer Input Parameters


BOISE STATE UNIVERSITY COLLEGE OF ENGINEERING

BOISE STATE UNIVERSITY

Flexible Pavement Typical Layer Input Parameters

BOISE STATE UNIVERSITY COLLEGE OF ENGINEERING


Flexible Pavement Typical Layer Parameters Required as Input

Flexible Pavement Typical Layer Input Parameters

BOISE STATE UNIVERSITY

Flexible Pavement Typical Layer Parameters Required as Input

Details of the Numerical Model

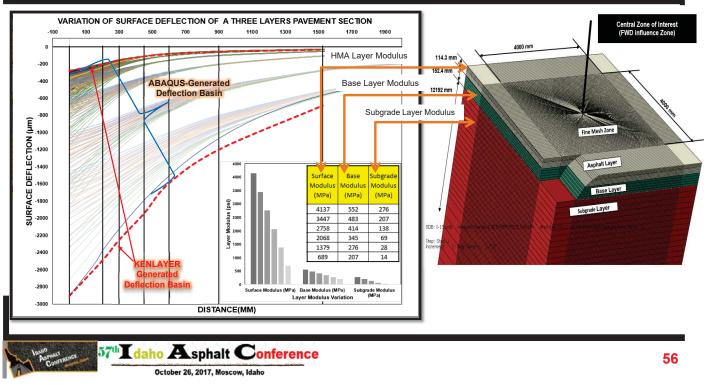
The physical structure The idealized model Advantages of 3-D Model

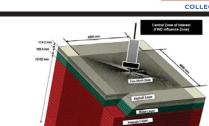
Provides the complete stress and displacement fields for the analyzed domain

НМА

Base

Subgrade


Not limited to linear elastic analysis


Disadvantages of 3D-FEM

- Require long computation times
- Significant Pre-processing and post-processing requirements.
- Solution is mesh-dependent.
 - In theory, the solution can always be improved by refining the 3D mesh.
 - Improvement comes at the expense of time.

Ref: Rodney N. Joel,(2008), Civil Engineer / Airfield Pavement Airport Engineering Division, Presented to: 2008 Eastern Region Airport Conference

The discretized (approximate)

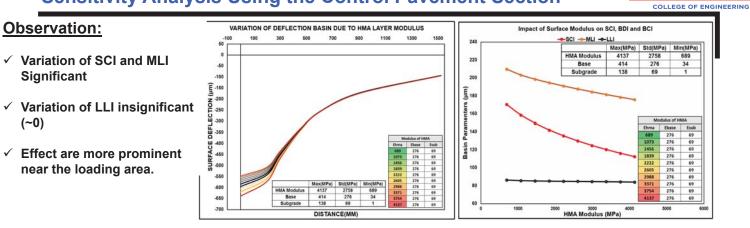
Model Dimensions

Length

Width

Depth

BOISE STATE UNIVERSITY COLLEGE OF ENGINEERING


26.0 m (85.3 ft.)

18.0 m (59.0 ft.)

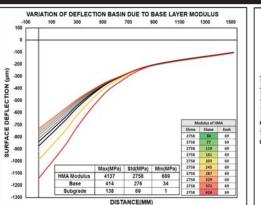
12.7 m (41.5 ft.)

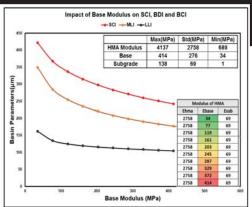
^{57&}lt;sup>th</sup>Idaho Asphalt Conference October 26, 2017, Moscow, Idaho

Sensitivity Analysis Using the Control Pavement Section

	Layer	Ela	stic Modulus	(MPa)	PI (%)	SCI/B	LI (µm)	MLI/BC	DI (µm)	LLI/BC	l (µm)	SCI (µm)	MLI (µm)	LLI (µm)
	Layer	Min.	Max.	Control	FI(70)	Max.	Min.	Max.	Min.	Max.	Min.	PD (%)	PD (%)	PD (%)
	НМА	689	4137	2758	+500	170	112	210	176	86	85	-34	-16	-1
	Base	34	414	276	+1118	422	242	349	177	162	105	-43	-49	-35
	Subgrade	17	138	69	+712	360	238	377	139	297	61	-34	-63	-79
*	**PI= Percenta	ge Increase f	rom minimum t	o maximum, PD	= Percentag	e Decrease	from maximu	m to minimun	n					

57


BOISE STATE UNIVERSITY COLLEGE OF ENGINEERING

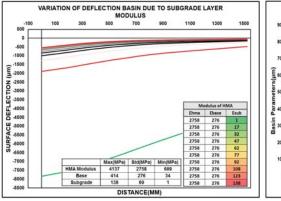

BOISE STATE UNIVERSITY

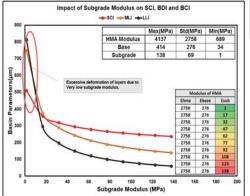
Sensitivity Analysis Using the Control Pavement Section

Observation:

- ✓ Rate of change of slope noticable in SCI, MLI and LLI
- ✓ SCI and MLI are highly influenced by changes in Base Modulus

Layer	Eli	astic Modulus	(MPa)		SCI/B	LI (µm)	MLI/BI	DI (µm)	LLI/BC	l (µm)	SCI (µm)	MLI (µm)	LLI (µm)
	Min.	Max.	Control	PI (%)	Max.	Min.	Max.	Min.	Max.	Min.	PD (%)	PD (%)	PD (%)
НМА	689	4137	2758	+500	170	112	210	176	86	85	-34	-16	-1
Base	34	414	276	+1118	422	242	349	177	162	105	-43	-49	-35
Subgrade	17	138	69	+712	360	238	377	139	297	61	-34	-63	-79


**PI= Percentage Increase from min. to max., PD= Percentage Decrease from max. to min.



Sensitivity Analysis Using the Control Pavement Section

Observation:

- ✓ Rate of change of slope noticeable in all three DBPs parameter such as SCI, MLI and LLI
- The variation of LLI are \checkmark considerable high.
- Deflection of farthest sensor \checkmark is highly influence by the variation subgrade of modulus.

SCI ---MLI ---LLI

80 100 120 Subgrade Modulus (MPa)

Layer	Elastic Modulus (MPa)			DI (9/)	SCI/BLI (µm)		MLI/BDI (µm)		LLI/BCI (µm)		SCI (µm)	MLI (µm)	LLI (µm)
	Min.	Max.	Control	PI (%)	Max.	Min.	Max.	Min.	Max.	Min.	PD (%)	PD (%)	PD (%)
HMA	689	4137	2758	+500	170	112	210	176	86	85	-34	-16	-1
Base	34	414	276	+1118	422	242	349	177	162	105	-43	-49	-35
Sub.G	17	138	69	+712	360	238	377	139	297	61	-34	-63	-79
I= Percentage Increase from minimum to maximum. PD= Percentage Decrease from maximum to minimum													

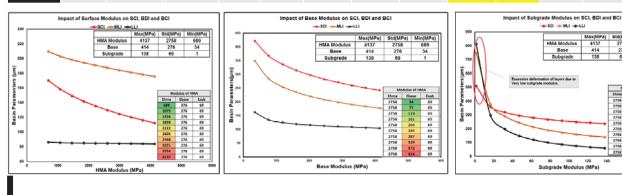
BOISE STATE UNIVERSITY COLLEGE OF ENGINEERING

a) Min(M 689

34

2758

276


160

4137

BOISE STATE UNIVERSITY COLLEGE OF ENGINEERING

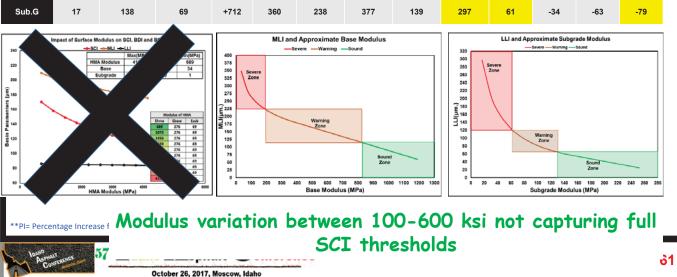
Sensitivity Analysis Using the Control Pavement Section

Layer	Elastic Modulus(MPa)				SCI/BLI(µm)		MLI/BDI(µm)		LLI/BCI(µm)		SCI(µm)	MLI(µm)	(μm) LLI(μm)	
	Mini.	Max.	Control	PI (%)	Max.	Mini.	Max.	Mini.	Max.	Mini.	PD (%)	PD (%)	PD (%)	
НМА	689	4137	2758	+500	170	112	210	176	86	85	-34	-16	-1	
Base	34	414	276	+1118	422	242	349	177	162	105	-43	-49	-35	
Sub.G	17	138	69	+712	360	238	377	139	297	61	-34	-63	-79	

**PI= Percentage Increase from min. to max., PD= Percentage Decrease from max. to min.

276

+1118


Base

34

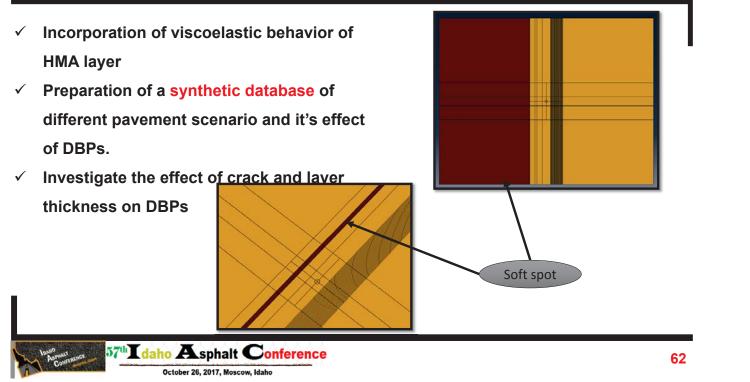
414

Sensitivity Analysis Using the Control Pavement Section LLI/BCI(µm) SCI(µm) Elastic Modulus(MPa) SCI/BLI(µm) MLI/BDI(µm) Layer PI (%) Mini. Control Max. Mini. Max. Mini. Max. Mini. PD (%) Max нма +500 689 4137 2758 170 112 210 176 86 85 -34

422

242

349


177

162

105

-43

Current Research Tasks

BOISE STATE UNIVERSITY COLLEGE OF ENGINEERING

LLI(µm)

PD (%)

-1

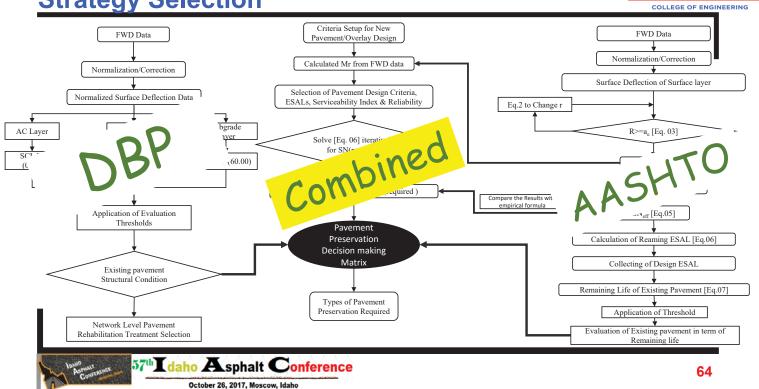
-35

MLI(µm)

PD (%)

-16

-49

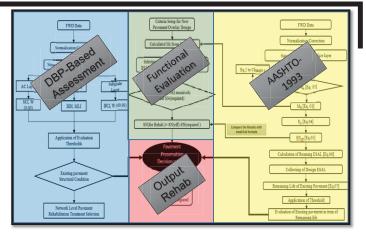

63

BOISE STATE UNIVERSITY

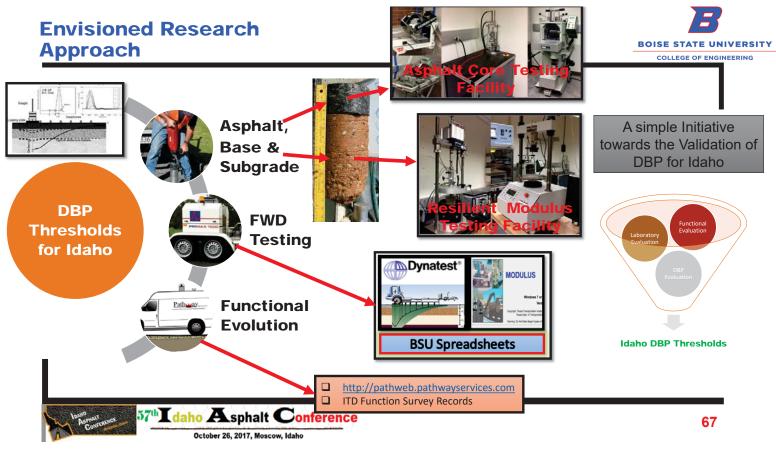
Moving Forward ...

Framework for Rehabilitation Strategy Selection

Framework for Rehabilitation Strategy Selection Dise STATE UNIVERSITY


- This framework not only follows
 AASHTO-1993 guidelines, but also
 considers DBP evaluation along with the
 existing functional evaluation function
 process.
- Final results are presented as percent layer condition, SN and RL, which depict a complete picture of existing pavement conditions, and will assist engineers in selecting the best rehabilitation strategies.

- ✓ Collaborate with ITD to gather as much data as possible concerning pavement layer depths (from cores) and corresponding FWD data.
 - ✓ This will facilitate the validation of the DBP approach for different pavement depths
 - ✓ Possible modification of DBP thresholds
 - ✓ The FWD Data Analysis Tool (currently under development) will be available for use by ITD districts for rapid assessment of network-level pavement structural condition



65

BOISE STATE UNIVERSITY COLLEGE OF ENGINEERING

57th Idaho Asphalt Conference, October 26, 2017

Dan Harelson John Arambarri Mike Santi Dave Richards Ed Bala Dr. Mandar Khanal

Dynatest°

