COLD IN-PLACE RECYCLING UTILIZING ENGINEERED EMULSION: PROJECT SELECTION AND CONSTRUCTION PRACTICES

Megan Chatfield, PE

Materials Engineer

Western Federal Lands Highway Division

ASPHALT RECYCLING METHODS

MATERIALS

- Engineered Emulsion (approx. 3%)
- Lime or cement (approx. 1%, used as a mineral filler and curing aid)
- Water (approx. 1%)
- Recycled asphalt pavement
- Fog Seal (application rate 0.05 to 0.15 gal/sqyd)
- Blotter

ASPHALT RECYCLING METHODS

- Cold In-Place Recycling (C-I-R)
 - Milling
 - Re-mixing
 - Placing and compacting
 - Same day operation

- Central Plant Recycling
 - Milling and removal
 - Line and grade adjustments
 - Central plant mixing
 - Hauling, placing and compacting

C-I-R PROCESS

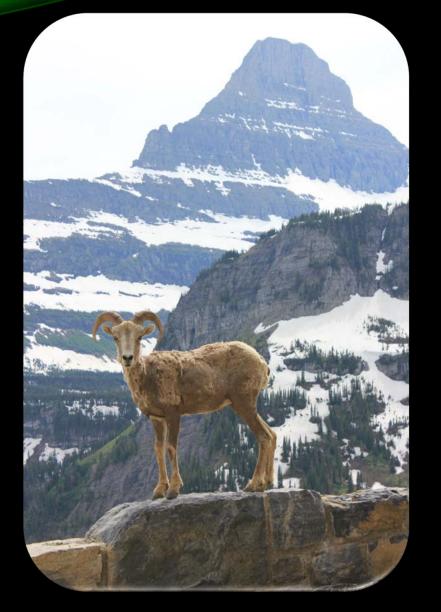
C-I-R PROCESS

C-I-R PROCESS

ASPHALT RECYCLING METHODS

- Cold In-Place Recycling (C-I-R)
 - Milling
 - Re-mixing
 - Placing and compacting
 - Same day operation

- Central Plant Recycling
 - Milling and removal
 - Line and grade adjustments
 - Central plant mixing
 - Hauling, placing and compacting



- Requires a lot of storage
 space
- Multiple handling operations

WITH MARKET

- C-I-R: Leave thin section of existing asphalt in place
 - Provides support for the milling train
 - Uniform material

- Utilize pickup machines or
- End dumps directly into the paver

- Material uniformly coated with emulsion
- Reduce down to 1.5 inch minus

- Allow material to begin cure prior to compaction
- Climate will adjust cure time
 - Shaded
 - High humidity
 - Temperature
- Emulsion supplier can provide cure accelerant

- Keep rollers back from paver
- Rapid compaction prevents efficient curing

- Initial breakdown with smooth vibratory double drum
- Pneumatic as Intermediate
- Finish with smooth drum to remove roller marks

FINAL SURFACE: PRIOR TO FOG

- Micro cracking is acceptable
- Traffic will aid in kneading together

LAYDOWN PROCESS • When to fog • Product stability • Using blotter • Traffic control and Stand Mint K. St. timing

- Fogged surface vs. open surface
- Cure times minimum two hours after compaction

FINAL SURFACE

CONSTRUCTION INSPECTION

- Monitor cutting depth / milling operation
- Do not include any base material (C-I-R)
- Emulsified asphalt addition rate (approx. 3%)
 - Established at start as part of mix design
 - Adjustments may be necessary
 - Mix will look dry
- Lime or cement addition rate (1%)
- Pavement laydown placement depth and width
- Compaction (Don't rush it!)
- Fog coat and blotter application

CONSTRUCTION CHALLENGES

CHALLENGES: RUTTING

CHALLENGES: RAVELING

PROJECT SELECTION

PROJECT SELECTION

- Estimated at approx. ³/₄ strength of HMA
- Provides opportunity to reuse existing materials
- Reduces pavement structure
- C-I-R needs reasonably consistent pavement depth. Approx ¹/₂" depth more than design
 - Do not include aggregate base with layer

PROJECT SELECTION: C-I-R OR CENTRAL PLANT RECYCLING

- Boring logs with depths of layers from subsurface investigation
- Project constraints / considerations
 - Adjusting grade
 - Sound existing structure with old pavement
 - Room for overlay
 - Excessive sub-excavation required
- Structural pavement analysis
- Sustainability concept

PROJECT SELECTION: ESTIMATION OF QUANTITIES

- In-place hot mix asphalt pavement = 150 pounds per cubic foot
 - In-place air voids approx. 5%
- C-I-R pavement = 135 pound per cubic foot
 - In-place air voids approx. 14%
 - No handling loss
- Central plant mixed
 - In-place air voids approx. 14%
 - Assume 5 to 10% handling and floor loss
- Approximately 10% increase in volume

PROJECT SELECTION

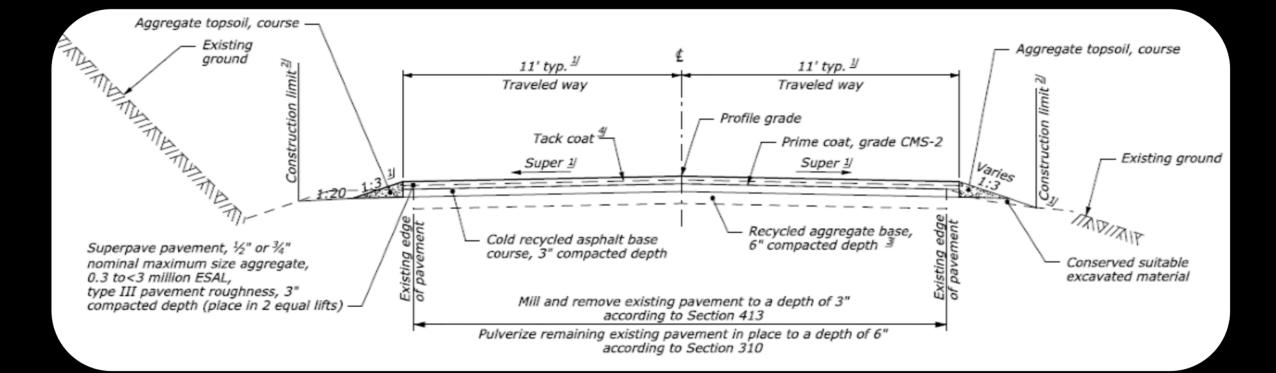
- Good candidate
 - End of service life
 - Minor patching
 - Fatigue cracking
 - 3 inch depth minimum

PROJECT SELECTION

- Poor candidate
 - Consistent recent crack seal
 - Less than 3 inches
 - Need to tie in to existing structures (C-I-R)

PROJECT SELECTION: BORING LOG EXAMPLE

STATE	FEDERAL HIGHWAY ADMINISTRATION VANCOUVER, WASHINGTON GEOTECHNICAL SECTION BORING LOG (English Units)	1.00		ORE			DRILL: DRILLE WEATH	LETED: ER: HER:	 /03 nown	
LC	DESCRIPTION ATITUDE (DEGREES):48.67487800 DNGITUDE (DEGREES):-113.60747500	GRAPHIC LOG	SAMPLE #	SAMPLE	BLOW	PLA	SAMPLE STANDA (140		IQUID LIMIT I RESISTANCE ER FOOT drop) 40 6	E 60
5	Asphalt. Red to gray, silty fine to coarse SAND, some fine to coarse gravel, some clay, subangular to angular fragments, damp SM) (BASE).									1
	Red, fine to coarse GRAVEL, some fine to coarse sand, ittle silt, trace cobbles, subangular to angular fragments, lamp (GP-GM). lard drilling. aboratory testing completed. aboratory Control Number: W-08-0284-SO I2.4% Gravel, 47.3% Sand, 10.3% Silt GP-GM; Poorly graded gravel with silt and sand.	00000								3
1 10	foisture at R Value is 131.8% at 300 psi. Boring completed at 3 feet.									


Average Distance between Borings	2674 feet
Average Thickness of Pavement	6 inches
Controlling Thickness	3.6 inches

Boring No.	Station	Distance Between Borings (ft)	Pavement Depth (in)
SG03-37	1846+20	2580	6
SG03-38	1872+00	2780	9.6
SG03-39	1899+80	2590	8.4
SG03-40	1925+70	2680	6
SG03-41	1952+50	2680	6
SG03-42	1979+30	2700	6
SG03-43	2006+30	2655	7.2
SG03-44	2032+85	2685	6

PROJECT SELECTION: BORING LOG DATA

Boring No.	Station	Distance Between Borings (ft)	Pavement Depth (in)
SG03-45	2059+70	2640	6
SG03-46	2086+10	2700	6
SG03-47	2113+10	2640	3.6
SG03-48	2139+50	2680	7.2
SG03-49	2166+30	2676	7.2
SG03-50	2193+06	2680	3.6
SG03-51	2219+86	2654	6
SG03-52	2246+40	2760	4.8
SG03-53	2274+00		6

PROJECT SELECTION: TYPICAL SECTION

CONCLUSIONS

- Utilizes existing materials
- Can be done in place or offsite
- Provides a flexible pavement layer
- Reduces pavement distress
- Decreases pavement structure thickness

THANK YOU!

Megan Chatfield, PE Materials Engineer Western Federal Lands Highway Division (360) 619-7586 Megan.Chatfield@dot.gov