Air Void Regression

Steve Hefel WisDOT HMA Supervisor

Idaho Asphalt Conference

October 22, 2020

Problem

- Fatigue cracking
- Wheel path cracking
- Raveling

Inadequate Binder In The Mix

 Since the inception of Superpave mixtures, Wisconsin has seen binder content in mixes decrease

Items To Address And A Possible Solution

- Need to put our thinking caps on
- Raise VMA
- Better monitor aggregate specific gravities
- Test Actual Binder Content
- Effective binder content
- Air Void Regression

Raise VMA

Add 0.5% to most surface mixes For 12.5mm mixes, [1] 14.5 for LT and MT mixes.

• For 9.5mm mixes, [2] 15.5 for LT and MT mixes

Aggregate Specific Gravities

- Contractor determined gravities are used
- Now verifying gravities with department samples
- Agg sources are verified more often, 1-3 years instead of 5

Asphalt Binder Content Determination

Previous

- AC by calculation.
- AC by nuclear gauge reading, optional.
- AC by inventory, optional.

• Current

- AC by ignition oven according to AASHTO T308 (CMM 836.6.3.6),
- by chemical extraction according to AASHTO T-164 method A or B; or
- by automated extraction according to ASTM D8159 as modified in CMM 836.6.3.1.

Effective Binder Content

- Started to be used by one region
- Requires many mix designs to be replaced with new designs or
- Would take years to fully implement

Not chosen to use statewide

Air Void Regression (AVR)

The Best Solution

- WisDOT AVR process, benefits, concerns
- Wisconsin Highway Research Program (WHRP) Research completed by NCAT
- WisDOT Performance Testing Data

Air Void Regression

- Design at the typical 4.0% air voids
- Meet all criteria for 4.0%
 - Gyratations, VMA, Dust to Binder, Percent Binder Replacement, etc
- Use the design points to determine binder content at 3.0%
- Use the 3.0% volumetric properties.

Existing 4.0% air void designs can be used as well as new ones No mass redesigns are needed

Air Void Regression

Original 4.0 Optimum %AC = ~ 5.7

Regressed 3.0 Optimum %AC = ~ 6.1

Volumetric Properties at 3.0%

- Binder content, % (Pb).
- Maximum specific gravity (Gmm).
- Bulk specific gravity (Gmb).
- Air voids, % (Va).
- VMA (voids of the mineral aggregate), %.
- VFB (voids filled with binder) also called VFA (voids filled with asphalt), %.
- TSR (tensile strength ratio).
- TSR Compaction Effort (N = "x").

Benefits

- Increased virgin binder added, 0.3 to 0.4%
- Increased durability, increased asphalt film thickness
- Increased in place density/decreased permeability
- Improved workability- easier paving
- No change to existing 4.0% designs except computing 3.0% volumetrics

• Cost

- Increase of \$1 to \$2 per ton
- Stability
 - WisDOT is confident in the dense graded aggregate structure
 - Reduced LT mESALS from below 2 mESALS to below 1 mESALS

Research, WHRP by NCAT

- Wisconsin Highway Research Program project 16-06
- Regressing Air Voids for Balanced HMA Mix Design
- Evaluate 6 common mix designs in Wisconsin regressed to lower air voids

Research Report <u>https://wisconsindot.gov/documents2/research/0092-16-06-final-report.pdf</u> Research Brief <u>https://wisconsindot.gov/documents2/research/0092-16-06-research-brief.pdf</u>

Flexibility Index for LT mix

Flexibility Index for MT mixes

Flexibility Index for HT mixes

National Center for Asphalt Technology

16-06 Hamburg Wheel Testing Corrected Rut Depth

- Corrected Rut Depth and Stripping Number are determined from Hamburg Wheel Data to separate the effects of rutting and stripping
- Fan Yin formerly at TTI now at NCAT promotes this method

Corrected rut depth (CRD) (Yin et al., 2014 – TRR 2446)

National Center for Asphalt Technology

Corrected Rut Depth for LT mix

National Center for Asphalt Technology NCAT

Corrected Rut Depth for MT mixes

Corrected Rut Depth for HT mixes

16-06 Conclusions

- "based on the I-FIT FI results, the regressed air voids approach to mix design will have a significant, positive impact on the cracking resistance of the mixtures"
- "designing Wisconsin asphalt mixtures with the air voids regressed to 3.0 percent is not likely to cause any problems with increased rutting susceptibility"
- "Results from this project indicate that the regressed air voids approach can improve cracking resistance without compromising the deformation resistance of asphalt mixes"

Research, WisDOT data

Performance Testing on Pre-2020 AVR mixes (I-FIT)
Performance Testing on 2020 AVR mixes (IDEAL-CT)

Performance Testing on 2020 AVR mixes

Summary

Even with AVR, WisDOT mixes are stable
AVR provides additional cracking resistance (along with other benefits)

"Performance testing completed in this research indicates 3.0% regressed air voids will improve pavement life in Wisconsin." - Steve Hefel, WisDOT

Air Void Regression

Increased asphalt binder → increased cracking resistance

Questions?

Steve Hefel, P.E.

HMA Supervisor Bureau of Technical Services Wisconsin Department of Transportation 608-246-7934 <u>Steven.Hefel@dot.wi.gov</u>

