Warm Mix Asphalt

48th Annual Idaho Asphalt Conference
October 23, 2008

Warm Mix Asphalt Scan Tour
May-June 2007
Norway-Germany-Belgium-France

The Tour:
• Scanning tour to Europe organized by:
 – The American Association of State Highway and Transportation Officials (AASHTO) &
 – The Federal Highway Administration (FHWA)
• To meet agencies using WMA Technology
• Suppliers and contractors developers
Warm Mix Asphalt

The Team:
- Represented a wide variety of HMA interests.
 - Three state DOT's
 - AASHTO
 - FHWA
 - Asphalt suppliers
 - HMA contractor industry
 - Consultant.

Purpose of the scan to gather information
- On technologies used to produce WMA
- Emphasis on long-term field performance

The Team identified the following specific topics:
- **WMA Processes**
 - What processes, materials and construction practices are used?
- **Mix Design and Construction Practices**
 - How do they differ from current standards?
- **WMA Performance**
 - Rutting, fatigue cracking, thermal cracking, moisture damage, etc.?
- **Limitations of WMA**
 - What class pavement, traffic volumes?
- **WMA Benefits**
 - What are the benefits and future plans for WMA?
Driving Factors in Europe including:
- Environmental concerns
- Sustainable development
- “Green Construction,”
- Reduction of energy consumption
- Reduction in CO₂ emissions
- Reduced worker exposure

Kyoto Agreement
- Reduced CO₂ emissions
 – Mandated as part of the EU’s ratification
- No direct impact the HMA industry in Europe.
- Industry has taken a proactive approach
 – Reduce CO₂ emissions
 – Reduce Worker Exposure

New EU regulation REACH
- Registration, Evaluation, Authorization of Chemical
- Substances, enforced in 2007.
- Requires information on potential exposure
- Derived Non-Effect Levels (DNEL).
 – Asphalt binders are included.

- Research
 – Correlation between temperature and fumes
- Anticipated DNEL
 – Application temperatures of > 200 °C (392 °F).
- Well above HMA placement temperature
 – Particularly in the U.S.
The Push for Implementation

- Norway
 - Contractor/Supplier Driven
- Germany
 - Contractor Driven
 - Bitumen Forum
 - Gussasphalt (Fumes)
- France
 - Contractor Driven/Agency Supported
 - Sustainable Technologies
- Netherlands
 - Contractor Driven

Gussasphalt:
- Also called mastic asphalt, is not SMA
- Binder rich mixture placed at 0% voids
- Sidewalks, building construction, and autobahn
- Coarse aggregate chips rolled into the surface
- Typically placed by hand at 450 °F (235 °C)
Warm Mix Asphalt

Gussasphalt (mastic asphalt) in Germany
- Application temperatures > 392 °F (200 °C)
- Makes up 1.6 percent of the total HMA
- Used in most European Cities
- Usage is relatively small,
 - Technology agencies do not want to give up.

Warm Mix Asphalt

WMA Technologies
- Several ways to classify WMA technologies
 - One is by temperature reduction
 - Hot Mix Asphalt > 275 °F (135 °C)
 - Warm Mix Asphalt > 212 °F (100 °C)
 - Half-Warm asphalt mixtures < 212°F (100 °C)

Warm Mix Asphalt

As a result of these concerns in Europe
- New technologies developed
 - Lower the production
 - Placement temperatures
- Referred to as Warm Mix Asphalt (WMA).
Warm Mix Asphalt

Three major classes of WMA technologies:

- Processes that use some form of additive
- Processes that use water
- Processes that use both water and additive

Processes that use waxes:
- Decreases viscosity above the melting point of wax

The type of wax must be selected carefully:
- Melting point higher than the in-service temperatures
 - Permanent deformation may occur – rutting
- Minimize embrittlement at low temperatures
 - Thermal Cracking issues

Fischer-Tropsch synthetic waxes
- Sasobit
 - Hot coal or natural gas feed stocks
 - treated with steam and a catalyst
 - Long-chain hydrocarbon
 - Waxes with a melting point of 208°F
 - Added to binder or directly into mix
 - Negative impact low temperature properties
Organic, Wax-like additives

- Asphaltan B – Romanta
 - Montan Wax
 - Fossilized plant wax.
 - Melting point is 82-95°C (180-200°F).
 - Also known as lignite wax or OP wax,
 - Hard wax obtained by
 - solvent extraction of lignite or brown coal.

- Fatty Acid Amides
 - Melting point: 141–146°C.
 - Used as modifiers in asphalt for a number of years
 - Available in various forms.
 - Used in roofing asphalt since late ‘70s early ‘80s

Processes that introduce small amounts of water

- Injected via a foaming nozzle
- Use a hygroscopic material such as zeolite
 - Blended with the dry aggregate
 - Releases water at elevated temps over time
- When the water turns to steam:
 - It expands by a factor of 1,673
 - Expands & cools the asphalt
 - Reduces the viscosity.
 - Amount of expansion varies depending
 - amount of water added
 - temperature of the binder
Warm Mix Asphalt

Foaming Processes

• WAM Foam
 – Kolo Veidekke/Shell Norway
 – A process, not an additive or material.
 – Contractor maintains two binder grades,
 • Blends in-line to produce the desired binder grade.
 • Aggregate
 – Heated to approximately 266 °F (130 °C)
 – Coated with the soft binder or 20 to 30 % of the total binder content.

The hard binder is then foamed
 • Water at a rate of 2 to 5 percent of hard binder
 (approximately 1.6 lbs of water per ton of mix)
 • The resulting binder grade would be a 70/100 Pen binder, unaged.
Foaming Processes LEA’s
- Low Energy Asphalt – LEA, EBE, EBT
 - French Companies:
 - Fairco/Eiffage
 - Travaux Publics
 - Nynas
 - LEAB®
 - Dutch Company:
 - BAM Contracting Company

Foaming Processes
- Aspha-min zeolite – MHI/Eurovia
 - Synthetic zeolite composed of alumosilicates.
 - Contains approximately 20 percent water of crystallization
 - Water is released by temperature over time.
 - Added to the mixture before or with the binder
 - Aspha-min is typically added at 0.3% by TWM
 - Creates a controlled foaming effect
 - Increases volume, reduces viscosity.
 - Gradual release of water reportedly provides a 6 to 7 hour period of improved workability,
 - Lasts until the temperature drops below 212°F (100°C)

- Low Energy Asphalt
 - LEA, EBE, EBT
 - Course Aggregate only heated to 300°F (150°C)
 - Coated with total Binder content
 - Additive
 - .5% weight of binder
 - To improve coating & adhesion
 - Wet fine aggregate added
 - Foams binder coating
 - Encapsulates course and fine aggregate
 - Laydown temp >212°F
Warm Mix Asphalt

LEA’s sequential mixing

PHASE 1
- 120°/150°C
- Dry, hot coarse aggregates

PHASE 2
- 170°C
- Foamed asphalt encases fine aggregates
- Coarse aggregates are coated by all the asphalt

PHASE 3
- 100°C
- Moisture from fine aggregates triggers asphalt foaming

PHASE 4
- 90°C
- Thermal equilibrium reached
- All aggregates uniformly coated

PHASE 5
- 170°C

Foaming Processes LEA’s

- **LEAB® – BAM**
 - Dries aggregate to 203°F(95°C)
 - Heats RAP in separate dryer 230-239°F(110-115°C)
 - Binder Foamed in into pugmill
 - Additive
 - .5% weight of binder
 - To improve coating & adhesion

- **Low Energy Asphalt**
 - Nynas (LT Asphalt)
 - Uses a foaming process and hygroscopic filler
 - About 0.5 to 1.0 percent of a hygroscopic filler
 - To control and sustain moisture foaming.
 - Aggregates are heated to 194°F(90°C)
 - Penetration graded binder is foamed
 - Mixed with the aggregates along
 - Hygroscopic filler
Warm Mix Asphalt

LEAB®

Set of six retractable Nozzles inject foam Into BAM's pugmill
Warm Mix Asphalt

Placement and Compaction

“Business as usual"
Primarily use:
• Longer Season
• Early opening to trafficking
• Longer hauls
• Wet weather paving
• Multi-lift construction
• Workability

Benefits of WMA

• Reduced Emissions
• Reduced Fuel Usage
• Paving Benefits
 – Pave in cool weather and still obtain density
 – Haul mix longer distances and still have workability
 – Improved compaction
 – Facilitate deep patches
 – Ability to use more RAP
Warm Mix Asphalt

Warm-Mix Asphalt: European Practice

Office of International Programs, FHWA-HPIP, Room 3325, U.S. Department of Transportation, Washington, DC 20590

international@fhwa.dot.gov

www.international.fhwa.dot.gov

Emerging U.S. Technologies

Water injector located on the liquid asphalt intake on drum.
Warm Mix Asphalt

Emulsion Based

- Evotherm™ – MeadWestvaco
 - Emulsion mixed with hot aggregates
 - Mix temperature between 185 to 240 °F
 - The emulsion uses a chemical package
 - to enhance coating, adhesion, and workability.
 - Water in the emulsion flashes off as steam
 - A new process has been developed called DAT,
 - Same chemical package
 - Diluted with a small amount of water
 - Injected in-line just before the mixing chamber.

Ohio Demo Project

- 2.70 mile Evotherm,
 - Everett Crews, Ph.D., Technical Manager, Asphalt Innovations, MeadWestvaco Corp.
- 2.70 mile Aspha-min,
 - Barry McKeon, Technical Manager, Hubbard Construction
- 3.07 mile Sasobit,
 - Larry L. Michael, Asphalt Consultant to Sasol Wax Americas, Inc.
- 3.03 mile Control Section:
NCHRP 9-47 “Engineering Properties, Emissions, and Field Performance of Warm Mix Asphalt Technologies”

- The research project is intended to provide:
 - Recommended modifications to the preliminary WMA mix design and analysis procedure under developed in NCHRP Project 9-43 (NCAT)
 - Protocol for laboratory evaluation of WMA performance;
 - Guidelines for WMA production and construction
 - Updated emissions measurement protocol
 - 42 month time frame

- Contacts
 Ed Harrigan
 Senior Program Officer
 NCHRP
 eharriga@nas.edu

 Mike Anderson
 Principal Investigator
 Asphalt Institute
 manderson@asphaltinstitute.org

Thanks!

H. Wayne Jones
Senior Regional Engineer
Asphalt Institute
wjones@asphaltnstitute.org