1. True or false?
 a. When a molecule absorbs a photon and makes a transition to a stationary quantum state \(j \) of energy \(E_j \) to a higher energy state, the absorption frequency \(\nu \) satisfies \(E_j = h\nu \).
 b. When a molecule emits a photon of frequency \(\nu \), it undergoes an energy change given by \(\Delta E = h\nu \).
 c. When a molecule absorbs a photon of frequency \(\nu \), it undergoes an energy change given by \(\Delta E = h\nu \).
 d. The longer the wavelength of a transition, the smaller the energy difference between the two levels involved in the transition.
 e. Exposing a molecule in state \(n \) to electromagnetic radiation of frequency \(\nu = (E_n - E_m)/h \) will increase the probability that the molecule will make a transition to the lower state \(m \) with emission of a photon of frequency \(\nu \).
 f. The spacing between adjacent low lying molecular translational, rotational, and vibrational levels satisfy \(\Delta E_{tr} < \Delta E_{rot} < \Delta E_{vib} \).
 g. At room temperature, many rotational levels of gas phase molecules are substantially populated.
 h. At room temperature, many vibrational levels of \(O_2(g) \) are substantially populated.
 i. A bound electronic state of a diatomic molecule has a finite number of vibrational levels.
 j. As the vibrational quantum number increases, the spacing between adjacent vibrational levels of a diatomic molecule decreases.
 k. As the rotational quantum number increases, the spacing between adjacent rotational levels of a diatomic molecule increases.
 l. Diatomic molecule vibration-rotation absorption bands always have \(\Delta \nu = 1 \).
 m. For diatomic pure-rotational absorption spectra, only \(\Delta J = +1 \) lines occur.
 n. Because only \(\Delta J = +1 \) is allowed in pure-rotational absorption spectra of diatomic molecules, a diatomic molecule pure-rotational spectrum contains only one line.

2. Use the harmonic oscillator selection rule \(\Delta \nu = \pm 1 \) to find the frequency or frequencies of light absorbed by a harmonic oscillator with vibrational frequency \(\nu_{vib} \).

3. For a certain quantum mechanical system, the wavelength for an absorption transition from level \(A \) to level \(C \) is 485 nm and the wavelength for an absorption transition from level \(B \) to level \(C \) is 884 nm. Find the wavelength of the transition between levels \(A \) and \(B \).

4. If the \(J = 2 \rightarrow 3 \) rotational transition for a diatomic molecule occurs at \(\lambda = 2.00 \) cm, find \(\lambda \) for the \(J = 6 \rightarrow 7 \) transition.

5. The \(J = 2 \rightarrow 3 \) pure-rotational transition for the ground state of \(^{39}K^{37}Cl \) occurs at 22410 MHz. Neglecting centrifugal distortion, predict the frequency of the \(J = 0 \rightarrow 1 \) pure-rotational transition of (a) \(^{39}K^{37}Cl \) and (b) \(^{39}K^{35}Cl \). You may assume that the equilibrium bond lengths for both isotopes are the same.

6. Give the number of normal modes of (a) \(SO_2 \); (b) \(C_2F_2 \); and (c) \(CCl_4 \).

7. \(H_2O \) vapor has an IR absorption band at \(\nu_{origin} = 7252 \) cm\(^{-1} \). The lower vibrational level for this band is the ground vibrational state, \(\nu_1 \nu_2 \nu_3 = 000 \). What are the possibilities for the upper vibrational level?