CE 211 - Surveying Engineering Class 20: Route Surveying

Ahmed Abdel-Rahim, Ph.D, P.E. Associate Professor, Civil Engineering

Class Objectives

- Identify route surveying objectives and procedures
- Define horizontal curves parameters and equations
- Define degrees of curvatures for horizontal curves using arc and chord definitions
- Relate R, D, $\Delta, L, L C, T, E$, and M for a horizontal curve
- Restation horizontal curves

ROUTE SURVEYS

- Route surveying includes the field and office work required to plan, design, and lay out any "long and narrow" transportation facility.
- Most of the basic surveying concepts and methods described in the previous chapters apply to route surveying.
- Horizontal distances, elevations, and angles must be measured, maps must be drawn, and profile and cross section views of the route must be prepared.

ROUTE SURVEYS

The route alignment for a road or railway line comprises a connected series of tangents and curves.

HORIZONTAL CURVES

- Computing the Curve

- Degree of Curve
- Stationing Along a Route
- Restationing
- Speed limit

■Terrain(flat, rolling, and mountainous)

Horizontal Curves - Types

HORIZONTAL CURVES

- The most common type of horizontal curve is a single arc of a circle, called a simple curve.
Stationing??

Horizontal Curves - Basic Definitions

Circular Curve- Definitions

- PC "Point of Curvature"
- PT "Point of Tangent"
- PI "Point of Intersection"
- R "Radius"
- D "Degree of Curvature"
Δ "Intersection angle"
T "Tangent Length"
- L "Curve Length"
- LC "Long chord Length"
- E "External distance"

M "Middle ordinate"

HORIZONTAL CURVES

The degree of curve may be determined by the arc definition (Da) or by the chord definition (Dc).

Horizontal Alignment

- Degree of Circular Curves (Degree of Curvature)
- Arc definition
- Chard definition

Circular Curve Formulas

- PC, PI, \& PT
- R, D \& I
- T, E, \& M
- L

Circular Curve Formulas
$R=\frac{5729.58}{D}(f f)$ [arc definition] $R=\frac{50}{\sin (D / 2)}(f t)$ [chord definition]
$T=R \tan \frac{\Delta^{\circ}}{2}$
$E=T \tan \frac{\Delta}{4}$
$E=R\left(\frac{1}{\cos (\Delta / 2)}-1\right)$
$M=E \cos \frac{\Delta^{\circ}}{2}$
$M=R\left(1-\cos \frac{\Delta^{o}}{2}\right)$

Example

- $\mathrm{R}=300 \mathrm{ft}$
- Two tangents that form an intersection angle of $74^{\circ} 46^{\prime} 36^{\prime \prime}$
- The station of PI is $7+47.64$
- Find: Station of PC and PT
- Station PC = Station PI-T
- Station PT = Station PC + L

The Restationing process - example

- A 2500-ft roadway route centerline is established during a preliminary survey. The three tangent sections are to be connected by two simple curves with R1=700 ft and R2 = 600 ft
- Find: The stations of the PCs and PTs, the total length of the route, and the last station in the final route.

CE 211-Surveying Engineering

The Restationing process - example

The Restationing process - example

T1=220.71
$\mathrm{L}=427.61$
$\mathrm{T} 2=133.02$
$\mathrm{L} 2=261.80$

PC1 $=500-220.71=279.29$
$=2+79.29$
PT1 $=279.29+427.61=706.90$
$=7+06.90$
 $=1+06.90 \quad S_{1}=(1200.00-500.00)-220.71-133.02=346.27 \mathrm{f}$
PC2 $=706.90+346.27=1053.17$
$=10+53.17$
PT2 $=1053.17+261.80=1314.97$
$=13+14.97$

