WWAMI Preparing for a HyFlex(ible) Or Online Fall

August 18, 2020
What’s happening—instructionally—in WWAMI?

What is unique about medical education—think process, practice, and proxemics?

What do you typically do?

How do you do it?

How will that translate into the instructional modality you have selected/been assigned?
And...

- What are your concerns and challenges?
- What’s new or different to you?
- What are some of the key skills students need to succeed in your classes?
- What about classroom technology?
- What about different instructional models?
Preparing for Fall

Multiple scenarios / Multiple solutions

FULLY ONLINE
- Asynchronous sessions
- Establish a presence and build community with audio and video
- Set clear expectations for communication, engagement, & participation
- Provide accessible content in multiple formats
- Consider simulations, presentations, and process-learning techniques
- Use BbLearn for online appropriate assignments, assessments, & feedback
- Create videos and learning modules, but keep them short, clear, & concise

HYBRID
- Blend of asynchronous and in-class synchronous sessions
- Clearly identify when and why synchronous sessions will be held
- Link asynchronous and synchronous content and learning experiences
- Consider “meetings” mindset for synchronous sessions
- Flip the class to make the most of synchronous sessions
- Set clear expectations for synchronous and asynchronous engagement

HYFLEX
- Primarily synchronous sessions
- Two “live” audiences –one in class, another online
- Clearly identify how and when each student/population will participate
- Set clear expectations for communication, engagement, and participation
- Record sessions for students who may not be able to attend live
- Think about parity –equally enriching learning experiences for all students
- Use BbLearn and other tools to maintain a sense of community

THE PIVOT
- Things can change in an instant, as they did in Spring, 2020
- Plan your class FLEXIBLY, knowing it may go fully online
- Design assignments, assessments, and communication strategies that can adapt to anything
- Think about what a seamless transition would look like and how that would work for you and your students

Talk to us about technology, pedagogy, and inclusive course- and instructional design!

University of Idaho
Fall 2020 Course Delivery Methods

<table>
<thead>
<tr>
<th>Course Delivery Method:</th>
<th>Classroom Meeting</th>
<th>HyFlex</th>
<th>Hybrid</th>
<th>Virtual Meeting</th>
<th>Online (Web)</th>
</tr>
</thead>
<tbody>
<tr>
<td>How will the course be delivered?</td>
<td>Classes will be taught on-campus during the times listed in the Class Schedule. Classroom capacity is limited to 50% of actual room capacity. This is a “traditional” class format.</td>
<td>Classes will be taught on-campus during the times listed in the Class Schedule. To decrease classroom density, some students will participate in the on-campus classroom and some will participate virtually via Zoom. Both modes will be delivered synchronously during the times listed in the Class Schedule.</td>
<td>Hybrid courses are a combination of Online and another format. Classes will be partially taught in-person or virtually during the times listed in the Class Schedule. Students must be available on the days and hours listed. In addition, a significant portion of the course will be taught asynchronously as an online course.</td>
<td>Classes will be taught via Zoom (or similar technology) during the times listed in the Class Schedule.</td>
<td>Classes will be taught fully online using BbLearn or other online resources. These courses do not have a regularly scheduled meeting time.</td>
</tr>
<tr>
<td>Will students meet in an on-campus classroom?</td>
<td>Yes</td>
<td>Yes, according to a rotating schedule specified by the instructor.</td>
<td>Yes, but in addition to significant online course components.</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Are students expected to attend classes at the designated time?</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Where will the faculty member be located during class sessions?</td>
<td>In the classroom</td>
<td>In the classroom</td>
<td>In the classroom or in a virtual meeting space such as Zoom.</td>
<td>In a virtual meeting space such as Zoom.</td>
<td>Not applicable (no scheduled class meetings)</td>
</tr>
</tbody>
</table>

- These are general descriptions of instructional delivery methods. Some variations may be seen for different pedagogical methods (e.g., flipped classrooms), disciplinary differences, classroom spaces, etc. Students should contact the course instructor with questions about course formats.
- For Fall 2020, the web fees applied to Hybrid, Virtual Meeting, and Online (Web) have been reduced from $35 to $25 per credit.
- There are no web fees for Classroom Meeting and HyFlex courses.
- The [Polya website](https://polya.uidaho.edu) has information about Math courses offered in Polya format.
- The [Engineering Outreach website](https://engineeringoutreach.uidaho.edu) has information about courses in Video format.
- See the [Course Schedule](https://coursehub.uidaho.edu) about Videoconference courses available at various UI locations.
A Common Approach: Rethinking and Rebooting –Not Overhauling

• Let’s:
 1. Think about our teaching philosophy
 1. What is my role?
 2. Think our goals
 1. What is the ultimate purpose of this class?
 3. Rethink our strategies and tools and create a map with alternate routes

<table>
<thead>
<tr>
<th>My role in this class is to:</th>
<th>The “big picture” course goals include:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
Make a map with alternate routes

<table>
<thead>
<tr>
<th>Goal/outcome</th>
<th>What I usually do</th>
<th>Alternatives?</th>
<th>Methods & Instruments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

https://www.webpages.uidaho.edu/cetl/learning-assessments.asp
Reminders

1. **Put the learning before the teaching so we teach for learning.**
2. **Think about pedagogy before (and then with) technology** — and chose the right combination
 - 1. Active learning and engaged learning strategies can be modified to different instructional modalities.
 - 2. All learning is active learning.
3. **Create a nimble/learning-centered syllabus** — it’s their roadmap to success. Yours, too.
4. **Focus on community and communication** — establish a presence; let them, too. Maintain it throughout the semester, no matter what. Set and stick to communication expectations.
5. **Focus on learning outcomes** — this is what you and the students “signed up for”.
 - 1. Clarify and justify. The more they know why they are doing something, the more likely they are to do it.
6. **Transparent assignments** — decide how students will demonstrate that they have met learning outcomes, and give them the opportunity to do so. Clearly communicate what the submitted artifact/evidence will look like
7. **Make time for the learning to happen and for students to make the most of feedback**

Here’s a [One minute read](#) and here’s a [Two minute read](#). What’s a take-away for your teaching?
What’s working and what’s not

What’s working: Three Cs

1. **Communication**
 1. Predictable patterns
 2. Common technological foundations
 3. Mutually agreeable expectations

2. **Community**
 1. Using technology to create a visible presence—us and them
 2. Building and sustaining engagement
 3. Fostering relationships among class members

3. **Clarity**
 1. What’s expected, when, and how
 2. On shifting instructional modalities
 3. On how and why different technologies and pedagogies are used.

What’s not:

1. Too rigid or too flexible
2. “More of me”, the instructor, lecturing
3. Poor use of class time
4. Poor use of/aversion to technology
5. Lack of variety
6. Poor LMS presence/usage
7. Unpredictable communication
8. Never asking for student input
9. Never doing anything with it
10. Ditto for faculty feedback
11. Inside-the-box thinking
12. What we did in a crisis isn’t sustainable for quality
HyFlex in Action

- Concerns involving student participation modes:
 1. The professor divides the class into groups
 1. Groups can be static (there is an in-class group and an online group) or rotational (where group membership alternates on Tuesdays and Thursdays, weekly, or in a project-based manner, for example).
 1. Consider pros and cons and decide accordingly.
 2. Students sign up for in-class seats until the “safe” number of in-person seats are taken
 1. This can be for the entire semester or for each class session.
 1. Consider pros and cons and decide accordingly.
 3. In-class seats can be assigned randomly or prioritized according to student need or preference
 - Note: students who test positive for COVID-19 or exhibit symptoms will attend class remotely.

- “It’s important to note that the goal of HyFlex is to make both the online and in-person experiences equal. Participation in class is necessary regardless of where and how students attend. Online is not meant to be a diminished experience but an alternative. Class sessions are not meant to be passive observations of a class video stream, but rather to have fully interactive engagements, including Q&A, group work (if possible) and student presentations”.

HyFlex sounds pretty easy (if you’re lecturing)

• As we rethink our classes, we need to rethink:
 • **Time** – new technical demands; getting in and out
 • **Space** – proxemics, navigation, and wellbeing
 • **Interaction** – faculty/student and student/student
 • **Communication** – among and between all students, regardless of how they participate, and that $&*@! Chat window.

• What we do and how we do it...
• What they do and how they will do it...

Inclusively
Accessibly

See Erin’s Presentation
Tips and examples for HyFlex teaching

<table>
<thead>
<tr>
<th>Flip</th>
<th>Use</th>
<th>Record</th>
<th>Post</th>
<th>Keep</th>
<th>Replicate or simulate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flip it</td>
<td>Use a modified tutorial model</td>
<td>Record sessions</td>
<td>Post supplemental materials</td>
<td>Keep students engaged and hold them accountable</td>
<td>Replicate or simulate key learning experiences for dual audiences</td>
</tr>
<tr>
<td>• Even in synchronous classes, a lot of the work—and learning—can occur in-between class sessions, and time in-class can be used for discussions about their learning.</td>
<td>• The “Oxford Model” still works great, and adapts really well to labs and learning of all types.</td>
<td>• Don’t underestimate the value of a good lecture. • Remember that you are an expert and your knowledge helps students understand all the content they are working with.</td>
<td>• Dynamic PPTs, Flipgrid, and Padlet, for example • Use content from other sources—data, videos, links to major information sources (scholarly and otherwise).</td>
<td>• Groupwork, projects, presentations, & discussions. • Have students reflect and write something, Cognitive Wrappers.</td>
<td>What typically happens in medical education that you fear might get lost in a different format?</td>
</tr>
</tbody>
</table>
Some Sciencey Stuff

• When you think about your classes and labs, what do you really do?
 • Is student work more observational or interactive?
 • Computational, analytical, or interpretive?
 • Is it typically in a classroom, an experimental laboratory, or the field?
 • PBL or CBL?

Can you...

• Focus on interpreting data as opposed to gathering it?
• Share data they can manipulate?
• Have students predict outcomes and identify the next steps in a process?
• What about the computational stuff? Knowing you got something wrong—and even where you went wrong—doesn’t necessarily help one learn how to get it right...
Some handy hints from Harvard’s Boc Center

- If the focus is on **learning techniques and their application to specific experimental situations**, consider asking your students to engage in online simulations that may cover at least portions of, if not the entirety of a protocol.

- Harvard’s [LabXchange](https://labexchange.mcb.harvard.edu) has just released a suite of lab simulations with assessments and **guidance** that focus on basic molecular biology techniques. The LabXchange library also includes a curated set of simulations drawn from partner sources like [PHET](https://phet.colorado.edu/) and the [Concord Consortium](http://concordconsortium.org/). How to combine these simulations with supporting content and your own assessments is described [here](https://labexchange.mcb.harvard.edu/). You will be able to assign these simulations with your associated assessments and get your students’ performance data. For additional help email: labxchange@mcb.harvard.edu.

- [MERLOT](https://merlot.org/) offers a collection of virtual labs in a variety of science disciplines, but note that you will not be able to capture student performance data. Many textbooks also provide interactive lab-based resources if you have adopted the book for your course.

- You might consider having your students watch videos of experiments; you can ask your students to first make predictions and then discuss the results. [The Journal of Visualized Experiments](http://www.thejove.com/) offers videos of experiments, including many designed for students.