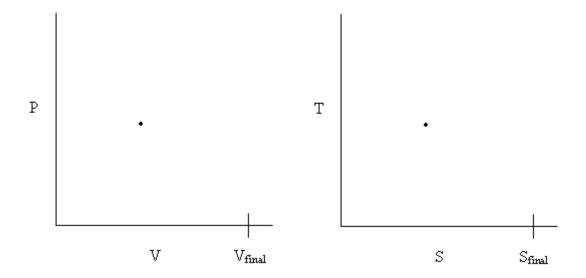
Visualizing Thermodynamic Processes with Diagrams

Names:

Orientation:

In this activity, your team will identify how a given process looks on a PV and TS diagram, and what the signs (+, -, or 0) are for each process as it relates to work, heat, and change in internal energy. Because it is impossible to memorize everything, engineers use general information to deduce/construct specific information. It is **critical** to understand how a process looks so you can develop and interpret cycle diagrams.


Learning Objectives:

- 1. Understand meaning of iso words and how they relate to process paths on PV and TS diagrams.
- 2. Use diagrams and integral relationships to determine signs of work, heat, and change in internal energy.

Targeted Skills:

Diagramming – clarifying relationships through visual representation Reasoning with theory – explaining data with accepted knowledge Collaborating – working together for mutual benefit Sharing knowledge – effectively presenting relevant facts and interpretations

- 1. You will use the dot as the starting point for each process you are *not* drawing a cycle in this problem. Sketch the following processes on pressure-volume (P-V) and temperature entropy (T-S) diagrams. For processes that change in volume (V) or entropy (S), have each process end at V_{final} or S_{final}. Label the endpoint of each process with the appropriate letter. Assume ideal gas behavior.
 - (a) isentropic expansion
 - (b) isothermal expansion
 - (c) isochoric heat addition
 - (d) isobaric heat addition
 - (e) reversible, adiabatic expansion

3. Which process paths are you	least confident a	about? Why?	
4. Give the sign (+, -, or 0) of the process. Assume ideal gas be	he work, heat, ar ehavior. Hint: us	nd change in internal e integral relationshi	energy for each ps.
	W	Q	ΔU
(a) isentropic expansion			
(b) isothermal expansion			
(c) isochoric heat addition			
(d) isobaric heat addition			
(e) reversible, adiabatic expansion			
5. What are two foolproof tips is	for determining 1	the sign of work, hea	t, and change in

2. Which process paths are you most confident about? Why?

internal energy represented on PV and TS diagrams?