Module 2: Environmental Sampling

2.7 Data Quality Objectives

Data Quality Objectives

- Data quality objectives are a planning tool to help ensure that data collected for a study are
 - the right amount
 - the right kind
 - the right quality

- Too often, data are collected based on
 - what's been collected in the past
 - what's easy to collect
 - · what's affordable
 - · what's familiar
- rather than focusing on what needs to be done

Module 2.7

Data Quality Objectives

 The U.S. Environmental Protection Agency developed the data quality objectives process to help organizations plan data collection activities to effectively and efficiently address environmental contamination issues

- State the problem
 - Understand exactly what is being studied and why
 - Often different stakeholders have different views of the problem
 - The time to come to a common understanding is prior to the data collection, not later

Module 2.7

Data Quality Objectives

- Identify the decision
 - Determine what decisions will be made based on the data

- Identify inputs to the decision
 - Decide what data is needed to make the decisions that need to be made
 - This involves thinking about
 - · what variables need to be measured

Module 2.7

Data Quality Objectives

- Define the study boundaries
 - What is the timeframe for the study
 - What are the spatial boundaries of the study area
 - Three dimensions: length, width, depth

- Develop a decision rule
 - Decide on the action limit by deciding how the data will be analyzed and what result will result in which management actions

Module 2.7

Data Quality Objectives

- Specify limits on decision errors
 - Two types of decision errors can exist
 - Do nothing when a problem exists
 - Do something when no problem exists
 - Decide what probability of each type of error is acceptable

• Optimize the design