Module 3: Models for Data
3.1 Discrete and Continuous

Probability Distributions

Probability Distributions

- Often it is important to know something about the underlying probability distribution that data come from.
- There is a branch of statistics that does not require any assumptions about distributions. These are nonparametric methods and will be discussed later.

Probability Distributions

- Information about the underlying distribution can come from:
- Knowledge of the data generating process
- Past data of a similar type
- Theoretical considerations
- Plots of current data

Discrete Probability Distributions

- Discrete probability distributions are used when the data can only take on specific values.
- Examples:
- Contaminated or Non-contaminated(0 or 1)
- Count data (0, 1, 2, 3, and so on)
- Value of a rolled die ($1,2, \ldots, 6$)

Discrete Probability Distributions: Notation

$P(x)=$ Probability $(X=x)$
$P\left(x_{1}\right)+P\left(x_{2}\right)+P\left(x_{3}\right)+\ldots P\left(x_{n}\right)=1$
$P\left(x_{i}\right)>=0$
Expected Value $=\mathrm{E}(\mathrm{X})=\sum_{i=1}^{\infty} X_{i}^{*} P\left(X_{i}\right)$
Variance $=\operatorname{Var}(X)=\sum_{i=1}^{\infty}\left(X_{i}-\mu\right)^{2} P\left(X_{i}\right)$

Discrete Probability Distributions: Binomial

Applies when there are n independent trials Two outcomes possible: success and failure $p=$ probability of success is constant Probability of x successes in n trials is

$$
P(x)=\left({ }^{n} C_{x}\right) p^{x}(1-p)^{n-x}
$$

Expected Value $=E(X)=n p$
Variance $=\operatorname{Var}(X)=n p(1-p)$

Note on Notation

$$
\left({ }^{n} C_{x}\right)=\frac{n!}{x!(n-x)!}
$$

Discrete Probability Distributions: Poisson

Applies when there are n independent events
Events occur at a constant rate μ
Probability of x events in a given period of time or area of space is

$$
P(x)=\frac{e^{-\mu} \mu^{x}}{x!}
$$

Expected Value $=E(X)=\mu$
Variance $=\operatorname{Var}(X)=\mu$

Discrete Probability Distributions: Hypergeometric

Applies when a population of N units contains R successes
Probability that a sample of size n contains x successes is

$$
P(x)=\frac{\left({ }^{R} C_{x}\right)\left({ }^{N-R} C_{n-x}\right)}{\left({ }^{N} C_{n}\right)}
$$

Expected Value $=E(X)=n R / N$
Variance $=\operatorname{Var}(X)=\underset{\text { Modue } 3.1}{R(N-R) n / N^{2}}$

Continuous Probability Distributions: Normal

Bell Shaped Curve
Occurs:
In nature (heights, weights, etc)
When the variable is the sum of other variables
Distribution of sample mean, total, proportion
$E(X)=\mu$
$\operatorname{Var}(X)=\sigma^{2}$
$\operatorname{StDev}(X)=\sigma$

Continuous Probability Distributions: Lognormal

Right skewed = has long tail to the right Occurs:

When the variable is the product of other variables
Often a good model for environmental contamination
$E(X)=\exp \left(\mu+\sigma^{2} / 2\right)$
$\operatorname{Var}(X)=\exp \left(2 \mu+\sigma^{2}\right)\left\{\exp \left(\sigma^{2}\right)-1\right\}$

Continuous Probability Distributions: Exponential

Applies when the time until an event
occurs or between events is of interest
$E(X)=\mu$
$\operatorname{Var}(X)=\mu^{2}$

