Module 3: Models for Data

3.2 Regression Analysis

Regression Analysis

- Regression analysis is useful when you are looking at the relationship between two or more variables.
- It's useful for trend analysis.
- If two variables are involved, the relationship could be a straight line or could contain various types of curvature.

Regression Analysis

Regression Analysis

- If three variables are involved, the lines become planes or curved surfaces.
- If the relationship involves multiple variables, the surfaces are multi-dimensional.

Regression Analysis

Data: Predictor Variables Response

x_{11}	x_{21}	\ldots	$x_{p 1}$	y_{1}
x_{12}	x_{22}	\ldots	$x_{p 2}$	y_{2}
\cdot	\cdot	\cdot	\cdot	
\cdot	\cdot	\cdot	\cdot	
$x_{1 n}$	$x_{2 n}$	\ldots	$x_{p n}$	y_{n}

Regression Analysis

Model:
$y=\beta_{o}+\beta_{1} x_{1}+\beta_{2} x_{2+\ldots+} \beta_{p} x_{p}+\varepsilon$
where ε is Normal (μ, σ)
Once the model coefficients are estimated, the model can be used to calculate a predicted y_{i} for any set of x_{i} 's.

Regression Analysis

- The regression coefficients (Betas) are estimated using least squares.
- Least squares minimizes the sum of the squared differences between the data values and their predicted values
- These differences are prediction errors
- So, we calculate estimates of the Betas that minimize the sum of the squared errors

Regression Analysis

$$
\mathrm{SSE}=\quad \sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}
$$

There are other important sums of squares
The Total Sum of Squares

$$
\begin{aligned}
& \text { Squares } \\
& (\mathrm{SST})= \\
& \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}
\end{aligned}
$$

The Regression Sum of Squares (SSR) can be easily calculated by subtraction SSR = SST SSE

Regression Analysis

- R^{2} is the coefficient of determination. It is the proportion of the variation in the Y variable that is accounted for by the regression model.

- $\mathrm{R}^{2}=\mathrm{SSR} / \mathrm{SST}=1$ - SSE/SST

- It is a measure of the usefulness of the regression model

Regression Analysis

- Mean Squares are calculated by dividing Sums of Squares by the appropriate degrees of freedom.
- A Mean Square is a measure of a variance
- If you divide a Mean Square by another, the resulting statistic has an F distribution with the degrees of freedom of the df of the numerator and the df of the denominator
- You can use these F statistics to test for significance. In this case, for the significance of the regression model.

Regression Analysis

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	Fatio
Regression	SSR	p		
Error	SSE	$\mathrm{n}-\mathrm{p}-1$	MSR	MSR/MSE
Total	SST	$\mathrm{n-1}$		

To carry out a a test at 95\% confidence, compare the calculated F ratio against a value from a table of the F distribution with p and n-p-1 degrees of freedom (Table A2.4 in Manly).

Regression Analysis

- If regressing on more than one variable, each variable must be tested for significance in addition to testing the significance of the overall model
- If the estimate of a Beta coefficient is not significantly different from zero, the variable should not be included in the model.

Regression Analysis

- There are two ways to build a model with multiple variables: forward stepwise and backward stepwise.
- Many statistical packages incorporate these.
- Forward adds one variable at-a-time, testing each one for significance as it is added.
- Backward stepwise starts with all of the variables in the equation and drops the nonsignificant ones out one-at-a-time.

Regression Analysis

- To test if a coefficient is significant, the estimate is compared to its standard error (recall that all statistics have standard errors).
- The ratio $b_{j} / \operatorname{SE}\left(b_{j}\right)$ has a t distribution with $\mathrm{n}-\mathrm{p}-1$ degrees of freedom
- So, to determine significance compare the calculated statistic against the value from a table of the t distribution

Regression Analysis

- Residual analysis should always be done after fitting a regression equation to check to see if the model form is adequate.
- An example of model inadequacy would be fitting a straight line to a curved relationship.
- The residuals would show the curvature

Example			
\mathbf{x}	Regression	Analysis	
1	10	3.6	75
1.2	28	4	95
1.5	15	4	60
2	45	4.5	72
2	35	5	87
2.2	20	5.2	69
2.2	60	5.8	48
2.6	81	6	57
3	45	6	70
3	69	Module 3.2	6.5
			55

Example Regression Analysis

$Y=B_{0}+B_{1} X$

ANOVA	SS	$d f$	MS	F	Significance of F	
Regression	3535.4	1	3535.4	8.7	0.0087	
Residual	7351.8	18	408.4			
Total	10887.2	19				
Coefficients				Standard Error	t Stat	P-value
Intercept	26.99		10.48	2.58	0.02	
X Variable	7.80		2.65	2.94	0.01	

$R^{2}=0.32$

Example Regression Analysis

Example Regression Analysis

- So, what to do?
- Looks like it needs a squared term to make it into a quadratic
- $Y=B_{0}+B_{1} X+B_{2} X^{2}$
- To do this, create a column in Excel that squares X and regress against both variables

Example Regression Analysis

- $Y=B_{0}+B_{1} X+B_{2} X^{2}$

\quad ANOVA	SS	$d f$	MS	F	Significance of F
Regression	7429.2	2	3714.6	18.3	0.00006
Residual	3458.0	17	203.4		
Total	10887.2	19			

	Coefficients	Standard Error	t Stat	P-value
Intercept	-36.54	16.29	-2.24	0.04
X Variable	50.74	9.99	5.08	0.00009
X 2 Variable	-5.74	1.31	-4.38	0.0004

$\mathrm{R}^{2}=0.68$

Example Regression Analysis

Much Better!

