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Since haemoglobins of all animal species have the same haem group, differences in their properties,
including oxygen affinity, electrophoretic mobility and pH sensitivity, must result from the inter-
action of the prosthetic group with specific amino-acid residues in the primary structure. For this
reason, fish globins have been the subject of extensive studies in recent years, not only for their
structural characteristics, but also because they offer the possibility to investigate the evolutionary
history of these ancient molecules in marine and freshwater species living in a great variety of
environmental conditions. This review summarizes the current knowledge on the structure, function
and phylogeny of haemoglobins of notothenioid fishes. On the basis of crystallographic analysis, the
evolution of the Root effect is analysed. Adaptation of the oxygen transport system in notothenioids
seems to be based on evolutionary changes, involving levels of biological organization higher than
the structure of haemoglobin. These include changes in the rate of haemoglobin synthesis or in
regulation by allosteric effectors, which affect the amount of oxygen transported in blood. These
factors are thought to be more important for short-term response to environmental challenges than
previously believed. © 2010 The Authors
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THE ENVIRONMENT AND NOTOTHENIOIDEI

The attention of physiologists and ecologists has long been attracted by environments
that lie at the limits of the physical conditions capable of supporting life. In particular,
the polar regions demand striking adaptations at the molecular, cellular or whole-
organism level to allow organisms to survive, grow and reproduce (Clarke et al.,
2007a).

Antarctica, more than any other habitat on Earth, offers a unique natural labo-
ratory for fundamental research on the evolutionary processes that shape biological
diversity. The variety of adaptations underlying the ability of modern Antarctic fish
to survive at the freezing temperatures of the environment represents the extreme of
low temperature adaptations among vertebrates.
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Over the past million years, the Antarctic shelf has been subjected to tectonic and
oceanographic events that began to alter the composition of the fish fauna and to
initiate the process of faunal replacement (Clarke & Crame, 1992). Fragmentation of
Gondwana into the modern southern continents and the displacement of the Antarc-
tic continent to its current geographic location have been the most significant events
responsible for these changes. The crucial opening of the Drake Passage between
southern South America and the Antarctic Peninsula occurred 23·5–32·5 million (M)
years before present (M b.p.) (Thomson, 2004) and possibly even as early as 41M
b.p. (Scher & Martin, 2006). The Drake Passage lead to the development of the
Antarctic Circumpolar Current (ACC) and this in turn was at least partially respon-
sible for cooling of Antarctic waters from c. 20◦ C to the present extreme values near
−1·8◦ C (Clarke, 1983).

The Antarctic Polar Front (APF), the northern boundary of the ACC, is a well-
defined, roughly circular oceanic system, running between 50 and 60◦ S (Fig. 1).
Along the APF, the surface layers of the north-moving Antarctic waters sink beneath
the less cold and less dense sub-Antarctic waters, generating virtually permanent
turbulence. Just north of the APF, the water temperature has an abrupt rise of c.
3◦ C, a critical factor for the isolation and adaptation of the ecosystem. The APF
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Fig. 1. Geographical location of Antarctica. The continent is surrounded by South America, Africa, Australia
and New Zealand. The dashed lines denotes the Antarctic Polar Front, the northern boundary of the
Antarctic Circumpolar Current, running between 50 and 60◦ S.
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greatly limited the opportunities for migration, forcing the shallow-water fish fauna
to either adapt to the changing climate or become extinct.

One group of teleost fish, the suborder Notothenioidei, became largely dominant
as a consequence of success in adapting to the challenging environmental conditions,
e.g. low temperature, sea ice, habitat reduction and seasonality of primary produc-
tion (Clarke & Johnston, 1996). The ancestral notothenioid stock probably arose as a
sluggish, bottom-dwelling teleost species that evolved some 40–60M b.p. in the shelf
waters (temperate at that time) of the Antarctic continent and experienced extensive
radiation, dating from the late Eocene, c. 24M b.p. (Near, 2004). Convincing argu-
ments provided by Eastman & McCune (2000) have considered notothenioids as one
of the very few examples of marine-species flock, due to the geographic, thermal
and hydrologic isolation of the Antarctic shelf.

The perciform suborder Notothenioidei is the dominant component of the Southern
Ocean fauna. High-Antarctic notothenioids are stenothermal (Eastman, 1993, 2005).
They live at the freezing point of sea water (near −1·9◦ C) and die at temperatures
of 4–6◦ C. High-Antarctic notothenioids are distributed south of the APF. Non-
Antarctic notothenioids, which comprise sub-Antarctic as well as temperate species,
are found north of the APF and compose 22% (28 of 129 species) of notothenioid
biodiversity (Eastman, 2005). Notothenioids exhibit considerable morphological and
ecological diversity and on the high-latitude shelves they account for 77% of the
fish diversity, 92% of abundance and 91% of biomass (Eastman, 2005). This level
of dominance by a single taxonomic group is unique among piscine shelf fauna of
the world.

Bovichtidae, Pseudaphritidae, Eleginopidae, Nototheniidae, Harpagiferidae, Arte-
didraconidae, Bathydraconidae and Channichthyidae are the families of the suborder
(Eastman, 2005). All Bovichtidae (except one species), monotypic Pseudaphritidae
and Eleginopidae and some species of Nototheniidae inhabit waters north of the APF
(Fig. 2). Molecular phylogeny has recently begun to provide indications about the
time of radiation in the Antarctic. Initial divergence took place c. 40M b.p. during
the Eocene (Near, 2004). In fact, Bovichtidae, Pseudaphritidae and Eleginopidae
essentially never experienced near-freezing water temperatures because they pre-
sumably diverged and became established in waters around areas corresponding to
New Zealand, Australia and South America before Antarctica became isolated.
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Fig. 2. Families of the suborder Notothenioidei; Bovichtidae (except one species), monotypic Pseudaphritidae
and Eleginopidae are non-Antarctic.
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The absence of any detectable antifreeze glycoprotein (AFGP) coding sequence,
important for enabling survival as the ocean chilled to sub-zero temperatures, in some
non-Antarctic species, i.e. Bovichtus variegatus Richardson, Pseudaphritis urvillii
(Valenciennes) and Eleginops maclovinus (Cuvier), is consistent with this hypothesis
(Cheng et al., 2003). The finding of the genes but lack of AFGPs in another temperate
notothenioid, the more recent nototheniid Notothenia angustata Hutton (Cheng et al.,
2003) supports the hypothesis that this species had developed cold adaptation before
migration from the Antarctic continental shelf to temperate latitudes that occurred
much later than other non-Antarctic species.

The availability of phylogenetically related notothenioid taxa living in a wide
range of latitudes (in the Antarctic, sub-Antarctic and temperate regions) is a tool to
potentially detect adaptive characters in response to climate change.

Climate change affects marine, terrestrial and limnetic polar systems. The great
constancy of water temperature in the Southern Ocean has supported the evolution
of stenothermal animal life, for the sake of an energy efficient mode of life in the
cold (Pörtner, 2006). Stenothermal marine species appear particularly vulnerable to
even small increases in temperature (Cook et al., 2005; Clarke et al., 2007b). Thus,
the rate of current changes in relation to the capacity of extant species to acclimate
or adapt is a crucial study area for the future management of polar ecosystems.

MOLECULAR ADAPTATIONS IN NOTOTHENIOIDS

In the process of cold adaptation, the evolutionary trend of Antarctic fish has led
to unique specializations in many biological features in comparison with temperate
and tropical species.

Examples include efficient microtubule assembly at temperatures as low as
−1·9◦ C (Detrich et al., 1989, 2000; Redeker et al., 2004), apparent loss of inducible
heat-shock response (Hofmann et al., 2000; Place et al., 2004; Place & Hofmann,
2005), still possessed by some of non-Antarctic notothenioids (Hofmann et al., 2005),
enzyme-structural constraints (Fields & Somero, 1998; Russell, 2000; Hochachka &
Somero, 2002; Collins et al., 2003; D’Amico et al., 2003; Feller & Gerday, 2003;
Fields & Houseman, 2004; Johns & Somero, 2004), decreased membrane fluidity
(Römisch et al., 2003), constraints in aerobic energy supply, mitochondrial function-
ing and the capacity of anaerobic energy production (Johnston et al., 1998; Pörtner,
2006) and higher levels of ubiquitin-conjugated proteins in tissues as evidence for
cold denaturation of proteins in vivo (Todgham et al., 2007). Recently, the complete
loss of the nicotinamide adenine dinucleotide (NADH) 6 dehydrogenase mitochon-
drial gene was reported for Antarctic notothenioids (Papetti et al., 2007), particularly
surprising in the light of the fact that its absence was never reported in any other
animal mitochondrial genome.

The biosynthesis of AFGPs is one of the most intriguing evolutionary adapta-
tions discovered in the Antarctic fish. AFGPs allow to avoid freezing by binding
water, thus preventing growth of ice crystals in the blood and other body fluids
(DeVries, 1988; Cheng & DeVries, 1991). Produced by pancreatic tissue and the
anterior portion of the stomach (Cheng et al., 2006), AFGPs are a family of poly-
mers composed of a glycotripeptide monomeric repeat, -Thr-Ala-Ala-, with each Thr
linked to the disaccharide galactose-N-acetylgalactosamine (DeVries, 1988; Cheng
& DeVries, 1991).

© 2010 The Authors
Journal compilation © 2010 The Fisheries Society of the British Isles, Journal of Fish Biology 2010, 76, 301–318



T H E H A E M O G L O B I N S O F N OT OT H E N I O I D F I S H E S 305

High-Antarctic notothenioids have ample gene families for the production of large
amounts of AFGPs. In non-freezing environments, where the antifreeze function
becomes nonessential, the AFGP function is reduced as observed in non-Antarctic
notothenioid fishes. In N. angustata and Notothenia microlepidota Hutton, living
in cool temperate waters, the AFGP system is reduced with very low blood AFGP
concentration and only two to three genes showing some replacements in the func-
tional repeat -(Thr-Ala-Ala)- (Cheng et al., 2003). Dissostichus eleginoides Smitt,
a non-Antarctic notothenioid of the family Nototheniidae, appears to have no func-
tional AFGP sequences, consistent with its non-Antarctic distribution. The apparent
absence of AFGP genes in D. eleginoides, however, is intriguing because the AFGP
gene was thought to have evolved once, before the Antarctic notothenioid radiation,
at the base of the family Nototheniidae. The hypothesis is that the species had the
primordial AFGP genotype, lost or mutated following its migration to non-Antarctic
habitats (Cheng et al., 2003).

The study of freezing avoidance in Notothenioidei is now developing along new
perspectives, linked to the recent discovery of AFGP-deficient, but freeze-resistant,
notothenioids in early life stages (Cziko et al., 2006). The absence of AFGP produc-
tion in larvae suggests that suitable freezing resistance may temporarily be afforded
by alternative mechanisms.

Specialized haematological features are striking adaptations developed by the
Antarctic ichthyofauna during evolution at low temperature. In the seven red-blooded
notothenioid families, the erythrocyte number is an order of magnitude lower than
in temperate fish and is reduced by over three orders of magnitude in the 16 icefish
species of Channichthyidae (Eastman, 1993), the most phyletically derived family,
whose blood lacks haemoglobin (Hb) (Ruud, 1954). Icefish retain genomic DNA
sequences closely related to the adult α-globin genes of its red-blooded notothe-
nioid ancestors and contemporaries, whereas its ancestral β-globin-gene sequences
have been deleted (Cocca et al., 1995; Zhao et al., 1998; di Prisco et al., 2002). The
discovery within the icefish family of two distinct genomic re-arrangements, both
leading to functional inactivation of the locus, seems to point towards a multistep
mutational process (Near et al., 2006).

In channichthyids, no carrier has replaced Hb and the oxygen-carrying capacity
of the blood is only 10% that of red-blooded fish. They cope with the lack of an
oxygen carrier with increased blood volume and higher cardiac output (Egginton
et al., 2002); they have large gills and highly vascularized, scaleless skin, which
favours cutaneous respiration. Recent studies highlight how the loss of Hb and their
associated nitrogen monoxide–oxygenase activity may have favoured the evolution
of these compensatory adjustments (Sidell & O’Brien, 2006). Although there is little
doubt about the adaptive value of AFGPs, the evolutionary meaning of the deletion
of the entire β-globin gene and parts of the α-globin gene observed in icefish is
controversial (Sidell & O’Brien, 2006). It can be argued that such a unique feature is
only possible in the oxygen-rich Antarctic waters, whereas it would be deleterious,
if not lethal, in warmer waters. This view is in agreement with Near et al. (2006),
who noted that Hb loss in icefish did not appear to be selectively neutral but is
rather maladaptive, as indicated by the development of compensatory adaptations
that enhance oxygen delivery, such as cutaneous uptake of oxygen and decreases in
metabolic oxygen demand.
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The loss of Hb in icefishes is paralleled by the loss of myoglobin (Mb) in six
icefish species through at least four mutational events (Sidell et al., 1997; Grove
et al., 2004; Sidell & O’Brien, 2006). Despite the costs associated with loss of these
haemoproteins, the constantly cold and oxygen-saturated waters of the Southern
Ocean provided an environment in which fish are able to survive even without
oxygen-binding proteins.

Recent evidence suggests that at least three of the adaptations evolved by icefish,
expansion of tissue capillarity density, enlargement of the heart and increases in
mitochondrial densities in the heart, may be due to the homeostatic responses medi-
ated by nitrogen monoxide. The loss of Hb, together with enhanced membrane-lipid
densities (accompanied by high concentrations of mitochondria), becomes explicable
by the exploitation of high oxygen solubility and low metabolic rates in the cold,
where an enhanced fraction of oxygen supply occurs through diffusive flux.

Mb has also been lost in many notothenioids, at least in certain tissues. No
notothenioid has Mb in its skeletal locomotory muscle, a loss of tissue-specific gene
expression that must have occurred early in the notothenioid radiation some 7–15M
b.p. (Sidell et al., 1997). Unlike Hb, where a gene has disappeared from the genome,
the gene encoding Mb is present in all icefish, even though in some cases the reading
frame is disrupted, whereas in other cases the gene is transcribed but the message is
not translated into protein (Grove et al., 2004).

Recently, the genome-wide investigations of transcriptional and genomic changes
associated with cold adaptation of Antarctic notothenioids have been reported (Chen
et al., 2008). Through comparative analysis of same-tissue transcriptome profiles
of Dissostichus mawsoni Norman and temperate–tropical teleost fishes, Chen et al.
(2008) identified 177 notothenioid protein families involved in mitigating stresses at
freezing temperatures that were expressed many fold over temperate fishes, indicating
cold-related upregulation. Further examination of the genomic and evolutionary bases
for this upregulation demonstrated that evolution under constant cold has resulted
in augmenting gene expression and gene functions contributing to the physiological
fitness of Antarctic notothenioids in freezing polar conditions (Chen et al., 2008).

THE HAEMATOLOGY IN NOTOTHENIOIDS

F I S H H A E M O G L O B I N S

Fish Hbs are particularly interesting because the respiratory function of fish differs
from that of mammals. In fish, gills are in contact with a medium endowed with
high oxygen tension and low carbon dioxide tension; in contrast, in the alveoli of
mammalian lungs, the carbon dioxide tension is higher and the oxygen tension is
lower than that in the atmosphere. The capacity of fish to colonize a large variety of
habitats appears strictly related to the molecular and functional differences of their
Hb system.

As in mammals, fish Hb is a hetero-tetramer having two identical pairs of α- and
β-globins (Fig. 3).

The overall affinity of Hb for oxygen is expressed as the gas partial pressure
required to achieve half-saturation (p50). The cooperative ligand binding in the
Hbs of higher vertebrates, expressed in the molecule because the binding of the
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Fig. 3. Three-dimensional structure of emerald rockcod Trematomus bernacchii haemoglobin (pdb code 2h8D)
(modified from Mazzarella et al., 2006b).

oxygen with one haem facilitates the binding of additional oxygen to the other
haem sites, has important physiological consequences, because it allows oxygen to
be efficiently released at relatively high oxygen partial pressure. During evolution,
complex and sophisticated molecular mechanisms, such as effects of pH, carbon
dioxide, organophosphates and temperature, have been developed to regulate oxygen
transport by Hb in higher vertebrates.

Fish commonly exhibit pronounced Hb multiplicity with marked differences in the
oxygen-binding properties and in their sensitivities to allosteric effectors, a differ-
entiation that may serve to adapt oxygen transport to environmental variations and
metabolic requirements (Weber, 1990; di Prisco & Tamburrini, 1992; Feuerlein &
Weber, 1994; Weber et al., 2000; Fago et al., 2002). Hb multiplicity is usually inter-
preted as a sign of phylogenetic diversification and molecular adaptation, resulting
from gene-related heterogeneity and gene-duplication events.

Red-blooded Antarctic notothenioids differ from temperate and tropical species
in having fewer erythrocytes and reduced Hb concentration and multiplicity (none
in channichthyids). The Hb content of erythrocytes is variable and in some species
seems positively correlated with life style (Eastman, 1993). The vast majority of
high-Antarctic notothenioid species have a single Hb (Hb 1), accompanied by minor
Hbs (Hb C in trace amounts, and Hb 2, c. 5% of the total), having one of the
globins in common with Hb 1 (di Prisco, 1998). High-Antarctic notothenioids have
lost globin multiplicity, leading to the hypothesis that in the Antarctic thermostable
environment the need for multiple Hbs may be reduced (Verde et al., 2006a, b). In
comparison with high-Antarctic notothenioids, Hbs of many non-Antarctic notothe-
nioids display higher multiplicity (di Prisco et al., 2007). It has been suggested
that Hb multiplicity is more frequently found in fish that must cope with variable
temperatures, whereas the presence of a single dominant Hb is usually associated
with stable temperature conditions. This may explain why high-Antarctic notothe-
nioids have a single major Hb, while sub-Antarctic and temperate notothenioids,
such as Cottoperca gobio (Günther) and Bovichtus diacanthus (Carmichael) (fam-
ily Bovichtidae) respectively, retained Hb multiplicity, presumably to cope with the
small or large temperature changes in the respective habitats north of the APF (di
Prisco et al., 2007).

© 2010 The Authors
Journal compilation © 2010 The Fisheries Society of the British Isles, Journal of Fish Biology 2010, 76, 301–318



308 D . G I O R DA N O E T A L .

Although a report (Sidell & O’Brien, 2006) challenges the ensuing hypothesis,
the reduction in Hb content and multiplicity and erythrocyte number in the blood
of high-Antarctic notothenioids is likely to counterbalance the potentially negative
physiological effects (i.e. higher demand of energy needed for circulation) caused
by the increase in blood viscosity produced by sub-zero seawater temperature.

The oxygen affinity of Hbs of many high-Antarctic species is quite low (di Prisco
et al., 2007), as indicated by the values of p50. This feature is probably linked to the
high oxygen concentration in the cold sea. In contrast, the affinity is higher in Hbs
of the non-Antarctic notothenioids. The relationship between high affinity of non-
Antarctic notothenioid Hbs and habitat features remains an open question as far as
its structural basis is concerned. In fact, spectroscopic and modelling studies on Hb
1 of the temperate notothenioid P. urvillii have shown that all the non-conservative
replacements in the primary structure of the α and β chains leave the conforma-
tion and electrostatic field surrounding the haem pocket essentially unmodified with
respect to Hb 1 of the high-Antarctic Trematomus bernacchii Boulenger (Verde et al.,
2004a; Mazzarella et al., 2006b).

T H E RO OT E F F E C T

The decreased oxygen affinity of Hb at lower pH values in the physiological range
is known as alkaline Bohr effect (reviewed by Riggs, 1988), whose importance is
to enable the animal to exchange oxygen and carbon dioxide at both lung or gill
and tissue levels. In many Hbs of teleost fishes, the complete loss of cooperativity
(indicated by a Hill coefficient equal to one), thus the inability to saturate the ligand
sites at low pH even at high oxygen pressure, is a distinctive property with respect
to the Bohr effect and is referred to as Root effect (reviewed by Brittain, 1987,
2005). The Root effect is responsible for a physiologically important response to
lactic acidosis, which may induce complete oxygen unloading. The physiological
significance of Root effect Hbs has been linked to the presence of at least one of
two anatomical structures that require high oxygen pressure: the rete mirabile which
supplies the gland that inflates the swimbladder with oxygen, and the choroid rete
mirabile, a vascular structure that supplies oxygen to the poorly vascularized retina
(Wittenberg &Wittenberg, 1974) (Fig. 4). Antarctic fish lack the swimbladder, and
it is worth mentioning that only the few species possessing Hbs without a Root
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Fig. 4. Swimbladder (a) and choroid (b) retia mirabilia in fish. The retia are part of counter-current exchange
systems. The acidic blood is in red, indicating oxygen release due to the Root effect.
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Fig. 5. Root effect of haemoglobins of the sub-Antarctic notothenioid Cottoperca gobio (Giordano et al., 2009),
having the choroid rete, and the high-Antarctic notothenioid Gymnodraco acuticeps (Tamburrini et al.,
1992), lacking the choroid rete.

effect, as well as those of the family Channichthyidae, are devoid of the choroid
rete (Eastman, 1988). A general reduction in the Root effect is noticed during the
evolution of the Antarctic notothenioids (di Prisco et al., 2007) (Fig. 5). Because
high-Antarctic notothenioids still have Hbs endowed with Root effect also when
the choroid rete is absent, this function may undergo neutral selection. Regarding
neutrality, it has been argued that the possession of the Root effect may undergo
neutral selection pressure in the simultaneous absence of retia mirabilia and presence
of high Hb buffer capacity, as in some basal ray-finned fishes and in the ancestors of
teleosts (Berenbrink et al., 2005; Berenbrink, 2007). This may generally also be the
case in notothenioids with increased Hb surface–His content (Verde et al., 2008),
because a role for some His residues as modulators of the Root effect has recently
been postulated (Mazzarella et al., 2006a, see below). It remains to be shown to
what extent each of these substitutions is the mechanistic cause of the reduced Root
effect or the consequence of an altered selection pressure on Hb buffer properties
once the Root effect was diminished (Verde et al., 2008).

Whatever the answer to the above questions may turn out to be, it seems that the
multiple losses of the ocular oxygen-secretion mechanism in notothenioids are not
necessarily associated with degenerate eyes or less visually oriented life styles, as
an alternative oxygen supply route to the retina by a system of hyaloid capillaries is
especially well developed in several notothenioid species that have lost the choroid
rete (Eastman & Lannoo, 2004; Wujcik et al., 2007).

The study of the molecular bases of the Root effect has been tackled by many
scientists over many years. Primary structures and analytical methods adopting an
evolutionary perspective have provided useful indications on the physiology and
evolution of the Root effect in fishes, but no unequivocal answer to the question
of the structural implications. In recent years, X-ray crystallography succeeded in
overtaking one of the classical views, which attempts to correlate all major changes
in Hb function with a few residue substitutions, thus significantly contributing to
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address the question in some instances. The extensive structural analysis of the Root
effect by X-ray crystallography of Antarctic fish Hbs was stimulated by the good
capacity to crystallize, together with the high sequence identity. These structural
properties by themselves, however, are not sufficient to explain the presence of the
Root effect. The current hypothesis is based on overstabilization of the T state, mainly
induced by the inter-Asp hydrogen bond at the α1/β2 interface (Mazzarella et al.,
2006a), possibly modulated by salt bridges involving histidyl residues (Mazzarella
et al., 2006b).

Within the realm of tetrameric Hbs, there is one aspect in which Antarctic fish
Hbs are exceptional. Although structurally and functionally analogous to mammalian
Hbs, Antarctic fish Hbs follow a peculiar oxidation pathway when exposed to air
or treated with chemical agents. The α and β chains of these proteins undergo
distinct oxidation processes. Particularly unusual is the strong tendency of the β

chains to form hexacoordinated bis-histidyl adducts in the ferric state (hemichrome)
(Riccio et al., 2002; Vitagliano et al., 2004, 2008). Interestingly, the finding that
Antarctic fish Hbs may assume states, such as hemichrome typically associated with
Hbs with lower complexity, demonstrates that such states are also accessible to
tetrameric Hbs. The bis-His co-ordination in the ferrous state, namely haemochrome
(Rifkind et al., 1994), however, has never been observed. Thus, upon reduction,
the hemichrome species is reversibly converted to the classical penta-co-ordinated
deoxy form (Vitagliano et al., 2004). As yet, there is no clear understanding of
the molecular constraints that prevent haemochrome formation in Antarctic fish
Hbs. Current work by Mazzarella’s team, based on a combined approach involving
electron paramagnetic resonance (EPR) and crystallography, suggests a correla-
tion between Root effect and hemichrome stability in Antarctic fish Hbs (Vergara
et al., 2009).

MOLECULAR EVOLUTION AND PHYLOGENY

Four major α- and β-globin groups have been proposed in teleost fishes (Maruyama
et al., 2004), i.e. Embryonic Hb Group (I), Notothenioid Major Adult Hb Group (II),
Anodic Adult Hb Group (III) and Cathodic Adult Hb Group (IV) [Fig. 6(a), (b)]
(Maruyama et al., 2004). Groups I and IV are still present in Oryzias latipes (Tem-
minck & Schlegel) whereas Groups II and III were lost during the evolution of
this species. Group I and IV are respectively located on chromosomes 8 and 19.

Fig. 6. Phylogenetic trees of fish α and β-globins (modified from di Prisco et al., 2007). The trees for
α (a) and β-globins (b) were inferred by a Bayesian method, using the software Mr Bayes with mixed
model. Antarctic notothenioid major globins are in italic, Antarctic notothenioid minor globins are in
dark grey, non-Antarctic notothenioid globins in bold and temperate globins underlined. Full species
names: Latimeria chalumnae, Electrophorus electricus, Carassius auratus, Cyprinus carpio, Catostomus
clarkii, Oncorhynchus mykiss, Chrysophrys auratus, Anguilla anguilla, Salmo salar, Hoplosternum lit-
torale, Chelidonichthys kumu, Oryzias latipes, Notothenia coriiceps, Notothenia angustata, Pleuragramma
antarcticum, Pagothenia borchgrevinki, Gobionotothen gibberifrons, Aethotaxis mitopteryx, Trematomus
newnesi, Trematomus bernacchii, Cygnodraco mawsoni, Gymnodraco acuticeps, Racovitzia glacialis,
Bathydraco marri, Pogonophryne scotti, Artedidraco orianae, Cottoperca gobio, Bovichtus diacanthus,
Pseudaphritis urvillii, Eleginops maclovinus.
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According to previous results (Verde et al., 2004a, b), globin paralogues (e.g. gene
copies originated by duplication in a given genome) currently found in Antarctic
fish diverged c. 250M b.p.; hence, unlike AFGP, whose appearance coincided with
cooling of the Antarctic continent (Chen et al., 1997), Hb diversification in major
and minor groups appears less stringently correlated to changes in the environmen-
tal conditions. The time of the gene-duplication event that gave origin to the two
paralogous groups of major and minor Hbs is similar, suggesting that they diverged
long before the first stock of ancestral notothenioids.

The phylogenetic trees of the amino-acid sequences of α and β chains of Hbs of
non-Antarctic notothenioids (temperate and sub-Antarctic), high-Antarctic notothe-
nioids and temperate fish Hbs, obtained using a Bayesian method, are reported
[Fig. 6(a), (b)] (di Prisco et al., 2007). The globins of major and minor Antarc-
tic fish Hbs cluster in two separate, strongly supported groups, with the anodic
and cathodic globins of temperate fish Hbs forming the first divergence lineage.
The globin-gene trees are in agreement with the species trees obtained by sequence
studies on mitochondrial RNA (Ritchie et al., 1996) and give strong support to the
monophyly of Antarctic notothenioids, with non-Antarctic C. gobio as their sister
taxon. The position of the C. gobio globins appears congruent with the phylogenetic
evidence from nuclear and mitochondrial genes (Bargelloni et al., 2000), suggesting
that C. gobio is the sister taxon of P. urvillii, E. maclovinus and also of the Antarctic
notothenioids.

The obtained topology is in general agreement with the maximum-likelihood
method (Giordano et al., 2006) and the hypothesis of four globin groups (Maruyama
et al., 2004). According to this hypothesis, α-globins that belong to notothenioid
minor Hbs are included in the ‘Embryonic Hb Group’ and those of the major
notothenioid Hbs are grouped into the ‘Notothenioid Major Adult Hb Group’. All
β-globin sequences from the major Hb 1 components (shared by Hb 1 and Hb 2 in
most Antarctic notothenioids) belong to the ‘Notothenioid Major Adult Hb Group’,
β-globins that belong to notothenioid minor Hbs are included in the ‘Embryonic Hb
Group’, with good bootstrap support.

In the phylogenetic trees, the basal position of P. urvillii Hbs appears congruent
with the postulated divergence before the appearance of AFGPs. The α chain of
P. urvillii, shared by Hb 1 and Hb 2, branches off the clade of the major Antarctic
Hbs, and the same applies to the β chain of Hb 1. The β chain of P. urvillii Hb 2
is in a basal position with respect to the clade of the Antarctic minor Hbs (Verde
et al., 2004a). The α chain of C. gobio Hb 1 also branches off the clade of the major
Antarctic Hbs, whereas the β chain shared by Hb 1 and Hb 2 is included in the clade
of the minor Antarctic Hbs (Giordano et al., 2006).

In the majority of notothenioids, embryonic α and β-globins are expressed in
trace or limited amounts in the adult stage, although in at least three species, namely
Trematomus newnesi (D’Avino et al., 1994), Pagothenia borchgrevinki (Boulenger)
(Riccio et al., 2000) and Pleuragramma antarcticum Boulenger (Tamburrini et al.,
1996), embryonic globins are expressed at significant levels (c. 25% of the total).
In these three species, however, the largest fraction of β chains is included in the
‘Notothenioid Major Adult Hb Group’. A complete switch to exclusive expression
of the embryonic β-globin gene seems to be occurred in adult C. gobio (Giordano
et al., 2006).
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CONCLUDING REMARKS

Gene expression patterns and, even more so, loss of genetic information, especially
for Mb and Hb in notothenioid fishes, reflect the specialization of Antarctic organisms
to a narrow range of low temperatures. These modifications become explicable by
the exploitation of high oxygen solubility at low metabolic rates in the cold, where
an enhanced fraction of oxygen supply occurs through diffusive oxygen flux (Pörtner
et al., 2007). Conversely, limited oxygen supply to tissues upon warming is an early
cause of functional limitation (Pörtner et al., 2007).

The evolutionary development of an alternative physiology based on Hb-free blood
may adequately work in the cold for notothenioids in general. Clearly, the benefits
due to Hb loss include reduced costs for protein synthesis. As pointed out by Pörtner
et al. (2007), however, the shift from Hb-mediated oxygen transport to mechanisms
based on diffusion may account for higher vulnerability of icefishes and of notothe-
nioids in general, to warmer temperatures.

The southern polar environment is experiencing significant climatic change, as
shown by sea-ice reductions on the western side of the Antarctic Peninsula (Clarke
et al., 2007b). Species such as Antarctic notothenioid fishes that have had a long
evolutionary history at constant temperatures may be uniquely vulnerable to Global
Warming (Somero, 2005).

Recently, Chen et al. (2008) have reported genome-wide studies of transcrip-
tional and genomic changes associated with cold adaptation in Antarctic notothenioid
fish. Their results strongly suggest that evolution in the cold has produced dramatic
genomic expansions and upregulations of specific protein gene families. Many of
these upregulated genes are involved in the function of antioxidants, suggesting that
augmented capacities in antioxidative defence are likely to be important components
in evolutionary adaptations in cold and oxygen-rich environment.
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tially supported by the Ministero Italiano dell’Università e della Ricerca Scientifica (PRIN
2007SFZXZ7 ‘Structure, function and evolution of haem proteins from Arctic and Antarctic
marine organisms: cold-adaptation mechanisms and acquisition of new functions’).
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