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FIGURE 2.1

Velocity distribution next
to a boundary.

Consider the flow shown in Fig. 2.1. This velocity distribution is typical of that for
laminar (nonturbulent).flow next to a solid boundary. Several observations relating to this
figure will help you appreciate the interaction between viscosity and velocity distribu-
tion. First, the velocity gradient at the boundary is finite. The curve of velocity variation
cannot be tangent to the boundary because this would imply an infinite velocity gradient
and, in turn, an infinite shear stress, which is impossible. Second, a velocity gradient that
becomes less steep (dV/dy becomes smaller) with distance from the boundary has a
maximum shear stress at the boundary, and the shear stress decreases with distance from
the boundary. Also note that the velocity of the fluid is zero at the stationary boundary.
This is characteristic of all flows dealt with in this basic text. That is, at the boundary sur-

~ face the fluid has the velocity of the boundary—no ship occurs.

From Eq. (2.6) it can be seen that the units of . are N + s/m?.
T N/m® _

= = N s/m?
# dV/dy (m/s)/m s/

A common unit of viscosity is the poise, which is 1 dyne-s/cm? or 0.1 N + s/m?2. The
viscosity of water at 20°C is one centipoise (107 poise) or 10 N - s/m2. The unit of
viscosity in the traditional system is 1bf - s/ft2,

Many of the equations of fluid mechanics include the combination w./p. Because it
occurs so frequently, this combination has been given the special name kinematic viscos-

+ ity-(so called because the force dimension cancels out in the combination w./p). The

symbc;l used to identify kinematic viscosity is v (nu). The units of kinematic viscosity v
are m-/s. : '

0 :.‘-}‘L *fc’?f: N___.,_..._.._.'S/mz — mz/s
? ~*  kg/ m>
The units for kinematic viscosity in the traditional system are ft%/s.

Whenever shear stress is applied to a fluid, motion occurs. This is the basic differ-
ence between fluids and solids. Solids can resist shear stress in a static condition, but flu-
ids deform continuously under the action of a shear stress. Another important
characteristic of fluids is that the viscous resistance is independent of the normal force
(pressure) acting within the fluid. In contrast, for two solids sliding relative to each other,
the shearing resistance is totally dependent on the normal force between the two.,
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Vapor Pressure

_20
p= r
Case (b) is a bubble of radius  that has internal and external surfaces and the surface-

tension force acts on both surfaces, so ’

”fo* <IL:

Case (c) is a cylinder supported by surface-tension forces. The liquid does not wet the
cylinder surface. The maximum weight the surface tension can support is

Wt = 2F, = 20L

where L is the length of the cylinder.
Case (d) is a ring being pulled out of a liquid. This is a technique to measure sur-
face tension. The force due to surface tension on the ring is

Fcr:Fo:i'*'Fo',o
= wa(D;+D,)

In addition to the preceding cases, surface tension is an important force in the
shattering of liquid droplets, the shape and motion of bubbles, and the structure of
foams.

The pressure at which a liquid will boil is called its vapor pressure. This pressure is a
function of temperature (vapor pressure increases with temperature). In this context we
usually think about the temperature at which boiling occurs. For example, water boils
at 212°F at sea-level atmospheric pressure (14.7 psia). However, in terms of vapor
pressure, we can say that by increasing the temperature of water at sea level to 212°F,
we increase the vapor pressure to the point at which it is equal to the atmospheric pres-
sure (14.7 psia), so that boiling occurs. When we think of incipient boiling in terms of
vapor pressure, it is easy to visualize that boiling can also occur in water at temper-
atures much below 212°F if the pressure in the water is reduced to its vapor pressure.
For example, the vapor pressure of water at 50°F (10°C) is 0.178 psia (approximately
1% of standard atmospheric pressure). Therefore, if the pressure within water at that
temperature is reduced to that value, the water boils.* Such boiling often occurs in
flowing liquids, such as on the suction side of a pump. When such boiling does occur
in flowing liquids, vapor bubbles start growing in local regions of very low pressure

* Actually, boiling can occur at this vapor pressure only if there is a gas-liquid surface present to
allow the process to start. Boiling at the bottom of a pot of water is usually initiated in crevices in the
material of the pot, in which minute bubbles of air are entrapped even when the pot is filled with
water.
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Euler’s Equation

In Chapter 3, we learned that the forces acting on a static fluid particle are the pres:
and gravitational force (weight). With no acceleration, the sum of these forces is z
In this section, we extend the analysis to an accelerating fluid particle.

From dynamics we know that the motion of a body is governed by Newton’s
ond law, F' = ma. The forces acting on a fluid mass are due to pressure and gra
(weight). For the present we are neglecting the forces due to viscous effects. Consider
cylindrical fluid element* situated between two streamlines shown in Fig. 4.12. We
regard this element as a “free body” in which the presence of the surrounding fluid i
placed by pressure forces acting on the element. Here the element is being accelerate
the € direction, and the direction of € is arbitrary. Note that the coordinate axis z is v
cally upward and that the pressure varies along the length of the element. Applying N
ton’s second law in the € direction, we have

2 F=ma .

F + F 'ma?‘

pressure gravity =

The mass of the fluid element is

m= pAAAz,;.?'
Substituting the forces due to pressure and gravity (weight) into Eq. (4.14), we have
pAA —(p+Ap)AA - AWsina = pAAA.a 4

Notice that the pressure force acting on the sides of the cylindrical element do not «
tribute to the force in the € direction. However, AW = yAfAA, so Eq. (4.15) reduces

~é£\~vsinoampa (4
FIGURE 4.12 l z (vertical)
“Free body” diagram for
. L /’)\ (p+ Ap)AA ot
Jluid element accelerating in — Streamlines TN —
the € direction. (a) Fluid N LA
element. (b) Trigometric / : PN
relation. e T
S ,/’//‘\\ al —
''''''' a7 ]
sin o = &
At

*1n this case, the words “fluid element” and “fluid particle” are synonymous. The word “elemer
used here because it is more descriptive of the shape.
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FIGURE 4.13

Uniform acceleration
of a tank of liquid

Pressure is a function of both position and time. Taking the limit of Ap/Af at a given
time as A€ approaches zero yields the partial derivative

=P

Figure 4.12b also shows that sin « is equal to Az// A, Taking the limit as A€ approaches
Zero at a given time yields

(4.17)

Equation (4.17) is Euler’s equation for motion of a fluid. It is interesting to note
that when the acceleration is zero, Eq. (4.17) reduces to 848 ) {(p +vz) = 0, which corre-
sponds to the familiar hydrostatlc equation p +yz = const. In other words, along a di-
rection in which there is no acceleration the pressure distribution is hydrostatic. For
example, in a flow with straight, parallel streamlines, the pressure in the direction normal
to the streamlines is hydrostatic because there is no acceleration in this direction. Again,
this assumes that the gravity and pressure forces are the only forces acting. When the
flow is static, there is no motion (or acceleration), so the viscous stresses are zero and
Euler’s equation reduces to the hydrostatic equation

An example application of Euler’s equation is to the uniform acceleration of liquid
in a tank.

Assume that the open tank of liquid shown in Fig. 4.13 is accelerated to the right,
the positive x direction, at a rate of a,. For this to occur, a net force must act on the liquid
in the x direction; this is accomplished when the liquid redistributes itself in the tank as
shown by A” B” CD. Under this condition the hydrostatic force at the left end is greater
than the hydrostatic force at the right, which is consistent with the requirement of
F=Ma.




| , 98 - - __FLOWING FLUIDS AND PRESSURE VARIA

Further quantitative analysis of the acceleration of the tank of liquid is made
Eq. (4.17). First consider application of the equation along the liquid surface A’B’.
the pressure is constant, p = Pam- Consequently, dp/o, = 0. The acceleration :

A’B’is given by a = ¢ -cosa. Hence, Euler’s equation reduces to
N X

(fl{( Yz) = —pa,cosa (
where the total derivative is uscawbecause the variables do not change with time. The
cific weight in Eq. 4.18 is constant. Therefore, Eq. (4.18) becomes

dz  a.cosa

f d’ I4
But dz/d, = -sina. Thus we obtain
. a,Ccosa
sino = —
8
or
a
tano = (¢
8
Still further analysis can be made if Euler’s equation is applied along a horiz
L plane in the liquid, such as at the bottom of the tank. Now z is constant and Eu

equation reduces to dp/d, = —pda, , which shows that the pressure must decreas
the direction of acceleration. The change in pressure is consistent with the chang
depth of the liquid because hydrostatic pressure variation prevails in the vertical di
tion, since there is no component of acceleration in that direction. Thus as the d.
decreases in the direction of acceleration, the pressure along the bottom of the tank 1

also decrease. Another case of uniform acceleration is given in the followin g exampl

,“qx_amplgmag

The tank on a tank truck is filled completely with gasoline, which has a specific weig
of 42 Ibf / ft* (6.60 kN / m?).

a. If the tank on the trailer is 20 ft (6.1 m) long and if the pressure at the top rear e
of the tank is atmospheric, what is the pressure at the top front when the truck dec
erates at a rate of 10 ft/s? (3.05 m/s%)?

b. If the tank is 6 ft (1.83 m) high, what is the maximum pressure in the tank?

p=0_ ey
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Solution Apply Euler’s equation along the top of the tank. Here z is constant and the
pressure does not vary with time during this phase of deceleration. Therefore, one may
write :

d,
wd A AP = ~pa
Bl TR
’adr"’

L i,

Integrating, one obtains
p=<p.al+C - DAL

s

y ‘ 1 »“a« ! ‘&
A When![=0, p=0;hence, C=0and p=cpay - ool

ﬂﬂﬂﬂﬂﬂ

Now substituting 10 ft/s? (-3.05 m/s%) for a,, 20 ft (6.1 m) for €, and 1.30

slugs /ft (672 kg /m’) for p, which is equal to -y / g, one obtains
= —1.30 slugs/ft° x (—10 ft/s%) x 20 ft = 260 psfg <
SLunits p=-673kg/m’x (-3.05m/s*)x 6.1 m
= 12,500 N/m” = 12,500 Pa gage <l

The maximum pressure in the tank will occur at the front end of the tank bottom.
Since the pressure variation is hydrostatic in the vertical direction, one obtains
p + Yz = constant, or '

DProttom  YZbottom = P top + Y<top

Solving yields
" Pbottom ~ 260 + (42)(6)
Pmax = Phottom =512 Png <]
_ _ 2 3
ST units  Pmax = Pootiom 12,500 N/m™ + 6.6 kKN/m” x 1.83 m

= 24.6 kPa gage

+

The Bernoulli Equation

The Bernoulli Equation along a Streamline

From the dynamics of particles in.solid-body mechanics, we know that integrating New-
ton’s second law for particle motion along a pathline provides a relationship between the
change in kinetic energy and the work done on the particle. Integrating Euler’s equation
along a pathline in the steady flow of an incompressible fluid yields an equivalent rela-
tionship called the Bernoulli equation.
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The pressure coefficient at point 3 is

V32
C,. =1~ oy
P3 (‘/1)
_1 (2_70)2
300
=0.19 <1

The negative C, indicates that the local static pressure at point 2 is less than the
free-stream value and the positive C,, shows a larger pressure at point 3 than the free-
stream value.

—8—

Rotation and Vorticity

Concept of Rotation

Consider a tank of liquid that is being rotated about a vertical axis. A plan view of such a
tank is given in Fig. 4.17. If we focus on a given element, it can be seen that this element
will rotate but not deform as time passes. In this process, all lines drawn through the ele-
ment, such as a-a and b-b in Fig. 4.17, will rotate at the same rate. This is unquestionably
a case of fluid rotation. Now consider fluid flow between two horizontal plates, Fig.
4.18, where the bottom plate is stationary and the top is moving to the right with a veloc-
ity V. The velocity distribution is linear; therefore, an element of fluid will deform as
shown. Here we see that the element face that initially vertical rotates clockwise,
whereas the horizontal face does not. It is not clear whether this is a case of rotational
motion or not. ‘

Rotation is defined as the average rotation of two initially mutually perpendicular
faces of a fluid element. The test is to look at the rotation of the line that bisects both
faces (a-a and b-b in Fig. 4.18a). The angle between this line and the horizontal axis is
0. If this line rotates, the flow is rotational. Obviously, in this case, there is rotation be-
cause the bisector does rotate. If the bisector does not rotate, the flow is irrotational. The
rotation can be monitored by inserting a cruciform (cross) shape in the flow, as shown in
Fig. 418b, and checking if it rotates. The cross will rotate with the bisector. If there is no
rotation, the flow is irrotational.

We will now derive an expression that will give the rate of rotation of the bisector
in terms of the velocity gradients in the flow. Consider the element shown in Fig. 4.19.
The sides of the element are initially perpendicular. Then the element moves with time
and deforms as shown. After time Az the horizontal side has rotated counterclockwise by
A6, and the vertical side clockwise by A6y. By definition, counterclockwise rotation is
positive. The rotational rate of the bisector is half the sum of the rotational rate of each
side, so
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The rotational rate of the element sides is related to the velocity gradients.
Referring to Fig. 4.19, the angle A6, is given by
Ayg— Ay,

A9 ;&———————-—Ax

(v + —a-lJ)At I VAY
ox

& Ax

i

or, in the limit as At —> 0,

Similarly, we can show

Likewise, the rotation rates about the other axes are

_1(ow_av
& 2[8)} azJ

_1f3u_ 3w
Qy ‘—'"Z(az ax]

The rate-of-rotation vector is

> VI o foold . (W= Qi+ Q. +Qk

Clhang, o Ley c
[ &

v
An irrotational flow (%: 0) requires that

9y _ du
dx dy
ow _ v
dy 0z
du _ dw

0z Ox

(4.30a)

(4.300)

(4.30c)

(4.31)

(4.324)
(4.32b)

(4.32¢)
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The most extensive application of these equations is in ideal flow theory.
ideal flow is the flow of an irrotational, incompressible fluid. Flow fields in which
cous effects are small can often be regarded as irrotational. In fact, if a flow of ap
compressible, inviscid fluid is initially irrotational, it will remain irrotational.

Vorticity

Another property used frequently in fluid mechanics is vorticity. The vorticity is ty
the rate-of-rotation vector, so the vorticity equation s

dw dv|  [Jdu dwl|. [du v
=) 20 === ==k (4
[r)y az} * [82 dx J’J " {ay BA‘)

=V X{,,v,./ [N

-4 éxample 4.7

The vector Vt 10xi — 10yj represents a two-dimensional velocity field. Is the flc
irrotational?

Solution  In a two-dimensional flow in the xy-plane, the flow is irrotational if

av _ du
dx dy
The velocity components and derivatives are
u=10x du _ 0
dy
A
Y ox

So the irrotationality condition is satisfied and the flow is irrotational.

example 4.8

A fluid exists between stationary and moving parallel flat plates, and the velocity is linear
shown. The distance between the plates is 1 cm and the upper plate moves at 2 cm/'s. Fi
the amount of rotation that fluid elements located at 0.25 cm, 0.5 cm, and 0.75 cm will under
after they have traveled a distance of 1 cm.
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FIGURE 4.20

Deformation of element in
Jlow with concentric,
circular streamlines.

Rotation in Flows with Concentric Streamlines

It is interesting to realize that a flow field rotating with circular streamlines can b
tional; that is, the fluid elements do not rotate. Consider the two-dimensional flc
shown in Fig. 4.20. The circumferential velocity on the circular streamline is V an
dius is 7. The x“axis is perpendicular to the page. As before, the rotation of the ele
quantified by the rotation of the bisector, which is

e

(6 + %(GAE-?F Gy

From geometry, the angle Afj is equal to the angle Ad. The rotational rate of ang
V/r, so

BT
The rate of change of the angle 0, is

Since V'is a function of r only, the partial derivative can be replaced by the total
tive. Therefore the rotational rate about the z-axis is

_lav, v
QZ~2(dr+rJ

For a flow rotating as a solid body, the velocity distribution is V = wr, o i
of rotation is

O, = %L%(u)r) + w]

Streamlines

Element at time ¢ + At

Bisector

Element at time ¢
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Summary

mechanics. The prediction of velocities in turbulent flows generated by separation is a
continuing challenge for engineers involved with computational fluid mechanics. For ad-
ditional information on vortices, see Hussaini and Salas (6) and Lugt (7).

Besides separation, there are many other natural processes that generate vortices.
For example, the Coriolis effect associated with low-pressure storm centers in the atmo-
sphere develop vortices (cyclonic storms) that extend hundred of miles. Large-scale vor-
tices develop from river discharges into a bay or ocean or when a smoke stack discharges
into the atmosphere. See references (8), (9), and (10) for discussion of eddies and basic
information on turbulent flow.

There are two approaches to describe the velocity of a flowing fluid. In the Lagrangian
approach, the position of a specific fluid particle traveling along a pathhne is recorded
with time. In the Eulerian approach, the properties of fluid particles passing a given point
in space are recorded with time. The Eulerian approach is generally used to analyze fluid
motion.

The streamline is a curve everywhere tangent to the local velocity vector. The con-
figuration of streamlines in a flow field is called the flow pattem. The pathline is the line
traced out by a particle. A streakline is the line produced by a dye introduced at a point in
the field. Pathlines, streaklines, and streamlines are coincident in steady flow but differ in
unsteady flows,

In a uniform flow, the velocity does not change along a streamline. In a steady flow,
the velocity does not change with time at any location.

The tangential acceleration of a fluid element along a pathline is

_avV, 0V
-Shevs,

where the first term is the local acceleration and the second term is the convective accel-
eration. The acceleration normal to the pathline is

a.._..._.
"o

where r is the local radius of curvature of the pathline.
* Applying Newton’s second law to a fluid element in an incompressible, inviscid
flow results in Euler’s equation,
d =
»a—}fp +Y2) = py,

where £ is an arbitrary direction. Integrating Euler’s equation along a streamline in
steady flow results in the Bernoulli equation,

p+'yz+p~?=c
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Cavitation typically occurs at locations where the velocity is high. Consider the
water flow through the pipe restriction shown in Fig. 5.10. The pipe area is reduced, so
the velocity is increased according to the continuity equation and, in turn, the pressure is
reduced as dictated by the Bernoulli equation. The physical configuration and the plots
of piezometric head along the wall of the pipe are shown in Fig. 5.10. For low flow rates,
there is a relatively small drop in pressure at the restriction, so the water remains well
above the vapor pressure and boiling does not occur. This is indicated in Fig. 5.10 where
the piezometric head lies above the centerline, indicating a positive pressure. However,
as the flow rate increases, the pressure at the restriction can become sub-atmospheric.
The pressure can drop no lower than the vapor pressure of the liquid because, at this
point, the liquid will boil and cavitation ensues.

The formation of vapor bubbles at the restriction of a venturimeter is shown in Fig.
5.11a. The vapor bubbles form and then collapse as they move into a region of higher
pressure and are swept downstream with the flow. When the flow velocity is increased
further, the minimum pressure is still the local vapor pressure, but the zone of bubble for-
mation is extended as shown in Fig. 5.11b. In this case, the entire vapor pocket may inter-
mittently grow and collapse, producing serious vibration problems. Severe damage that
occurred on a centrifugal pump impeller is shown in Fig. 5.12, and serious erosion pro-
duced by cavitation in a spillway tunnel of Hoover Dam is shown in Fig. 5.13. Obvi-
ously, cavitation should be avoided or minimized by proper design of equipment and
structures and by proper operational procedures.

A video of cavitation occurring in the region of a marine propeller is available on
the net at www.wiley.com/college/crowe. In this situation, the high liquid velocities pro-
duced by the rotating propeller cause a low pressure and cavitation. The bubbles ob-
served in the video indicate cavitation.

; m;m’aefg o, is defined as thwressure coefficient where cavitation oc-

(o= (p/8)—hy

{
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L(P#)xai1/280] = [{PW)5_(1/2)a0)

Ax
+ [PY)ys12a9] — LPY)y-1/2)ay]
Ay
+ LPW)zei/2az) = LPW) (1234
Az
dp _
+ o )

Taking the limit as the volume approaches zero (that is, as Ax, Ay, and Az uniformly ap-
proach zero) yields the differential form of the continuity equation

9 9 2 (ow) =38
35 P+ ay(pv) +5 P =, (5.32)
If the flow is steady, we obtain
9 d 9=
ax(pu) + ay(pv) + aZ(pw) =0 (5.33)
And if the fluid is incompressible, we have
du , dv  adw _
G + > + 32 0 (5.34a)
for both steady and unsteady flow.
In vector notation, Eq. (5.344) is given as
V-V=0 (5.34b)

where V is the del operator, defined as

9
dz

12 458
V=igtigrk
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FIGURE 10.1

Flow in a pipe.
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uniform flow, equilibrium between the pressure, gravity, and shearing forces acting on
the fluid will prevail. Consequently, the momentum equation yields the following:

> F=0

PA - (p + %AS)A — AWsina ~7(Rr)As = 0 (10.1)

In Eg. (10.1) AW = yAAs and sina = dz/ds. Therefore, Eq. (10.1) reduces to
P AsA _¥ansE pomryas = 0 (10.2)

ds ds
Then, when we divide Eq. (10.2) through by AsA and simplify, we obtain
_rf_d |

P=3-L0p+¥0)] (103)
Since the gradient itself, d/ds (p + +yz), is negative (see Section 7.4) and constant across
the section for uniform flow,* it follows that —d/ds (p + yz) will be positive and constant
across the pipe section. Thus T in Eq. (10.3) will be zero at the center of the pipe and will

increase linearly to a maximum at the pipe wall. We will use Eq. (10.3) in the following
section to derive the velocity distribution for laminar flow.

* The combination p + 'Yz is constant across the section because the streamlines are straight and parallel
in uniform flow, and for this condition there will be no acceleration of the fluid normal to the stream-
line. Thus hydrostatic conditions prevail across the flow section. For a hydrostatic condition,
p/ g +z = constant or p +‘6fz = constant as shown in Chapter 3.
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Laminar Flow in Pipes

We determine how the velocity varies across the pipe by substituting for 7 in Eq. (10.3)
its equivalent dV/dy and integrating. First, making the substitution, we have

- ma /h%= g[—j’i(p +Xz)] (10.4)

Because dV/dy = —dV/dr, Eq. (10.4) becomes

v _ r[ d
AT

When we separate variables and integrate across the section, we obtain

2
V= _Zfij_di(p ¥+ c (10.6)

AY

We can evaluate the constant of integration in Eq. (10.6) by noting that wzhen r = ry, the ve-
locity V= 0. Therefore, the constant of integration is given by C = (ro 74w)l—d/ds(p +
vz)], and Eq. (10.6) then becomes

2 2
_To-rr d
V= 7 5 +¥2) | (10.7)
Equation (10.7) indicates that the velocity distribution for laminar flow in a pipe is para-

bolic across the section with the maximum velocity at the center of the pipe. Figure 10.2
shows the variation of the shear stress and velocity in the pipe.

FIGURE 10.2

Distribution of shear stress
and velocity for laminar z (vertical)
Sflow in a pipe.
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- example 10.1

Laminar flow in a round pipe is known as Hagen-Poiseuille flow, named after a
German, Hagen, and a Frenchman, Poiseuille, who studied low-speed flows in tubes in
the 1840s.

Oil (S = 090, L=5x10"N.s/ m?) flows steadily in a 3-cm pipe. The pipe is ver-
tical, and the préssure at an elevation of 100 m is 200 kPa. If the pressure at an elevation
of 85 m is.250 kPa, is the flow direction up or down? What is the velocity at the center

of the pipe and at 6 mm from the center, assuming that the flow is laminar?

Solution  First determine the rate of change of p + yz. Taking s in the z direction,

15
_ [200x 10 + 8830(100)] ~ [250 x 10° + 8830(85)]
15
g e 6 6 2
_ (1.083x 10 f_115.(1?1x 10%) N/m? _ & oo

- The quantity p +vyz is not constant with elevation—it increases upward (decreases

downward). Therefore, the directior% of flow is downward. This can be seen by substi-
tuting d(p +x§'z)/ ds = 5.53 kKN/m" into Eq. (10.7). When this is done, V is negative
for all values of 7 in the flow. When r = 0 (center of the pipe), the velocity will be max-

imum. Thus

i
Veemer = Vi = 7(~5.53 KN/m’)

__ 0015%m’ 33
= A5 %107 il (=5.53x 10" N/m”) = -0.622 m/s <]
45 N:s/m")

At first it may seem strange that the velocity is in a direction opposite to the direction of
decreasing pressure. However, it may not seem so peculiar if one realizes that in this ex-
ample the pipe is vertical, so the gravitational force as well as pressure helps to estab-
lish the flow. What counts when flow is other than in the horizontal direction is how the
combination p +yz changes with s. If p + yz is constant, then we have the equation of
hydrostatics and 10 flow occurs. However, if p + vz is not constant, flow will occur in
the direction of decreasing p +vz. - -

Next determine the velocity at » = 6 mm = 0.006 m. Using Eq. (10.7), we find
that

2 2 2.2 :
=001 m —0.006 W0 5 53 10" N/m’) = ~0.522 m/s <

4 1
4(5x107 N-s/m")
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For many problems we wish to relate the pressure change to the rate of flow or mean
velocity V' in the conduit. Therefore, it is necessary to integrate dQ = VdA over the cross-
sectional area of flow. That is,

Q=deA

(- g -

= j Sk oftran)
0 /4 s '

The factor w[d(p + gz)/ds]/4m is constant across the pipe section. Therefore, upon in-

tegration, we obtain

(10.8)

i 2,
o Bldrto 5

(10.9)

which reduces to

Q=g 7P éz)] (10.10)

@[
If we divide through by the cross-sectional area of the pipe, we have an expression for
the mean velocity:

V=20 ["_(p gz)] (10.11)

/I

Comparing Egs. (10.11) and (10.7) reveals that V = Vimax” 2. Also, by substituting D/2 -

for ry, we have
2
v=L[4d. .
= 32/{ <(p @z)] (10.12)

or S+ = - (10.13)
Integrating Eq. (10.13) along the pipe between sections 1 and 2, we obtain
pr-p1 +8(z-2) =—¥‘§Z(Sz—~sl) (10.14)

Here s, — sy is the length L of pipe between the two sections. Therefore, Eq. (10.14) can
be rewritten as

Plig =P24q,4 ALY (10.15)
¥ ¥ gD
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@

It can be seen that when the general energy equation for incompressible flow in conduits,
Eq. (7.24), is reduced to one for uniform flow in a constant-diameter pipe where
V, =V, the result is

Pi P2
Y |

Here h; is used instead of A; to signify head loss due to frictional resistance of the pipe.
Comparison of Eqs. (10.15) and (10.16) then shows that the head loss for laminar flow is
given by

b= 2LV
gDZ

Here the bar over the V has been omitted to conform to the standard practice of denoting
the mean velocity in one-dimensional flow analyses by V without the bar.

(10.17)

Criterion for Laminar or Turbulent Flow in a Pipe

? - rhe

To predict whether flow will be laminar or turbulent, it is necessary to explore the charac-
teristics of flow in both laminar and turbulent states. Although other scientists before him
had sensed the marked physical difference between laminar and turbulent flow, it was Os-
borne Reynolds (1) who first developed the basic laws of turbulent flow. With his analyti-
cal and experimental work he showed that the Reynolds number was a basic parameter
relating to laminar as well as turbulent flow. For example, using an experimental appara-
tus such as that shown in Fig. 10.3, he found that the onset of turbulence in a smooth pipe
was related to the Reynolds number (VD /M) in a very interesting way. If the fluid in the
upstream reservoir was not completely ‘still or if the pipe had some vibration in it, the
flow in the pipe as it was gradually increased from a low rate to higher rates was initially
laminar but then changed from laminar to turbulent flow at a Reynolds number in the
neighborhood of 2100. However, Reynolds found that if the fluid was initially completely
motionless and if there was no vibration in the equipment while the flow was increased, it
was possible to reach a much higher Reynolds number before the flow became turbulent.
He also found that, when going from high-velocity turbulent flow to low-velocity flow,
the change from turbulent flow always occurred at a Reynolds number of about 2000.

These experiments of Reynolds indicate that under carefully controlled conditions it
is possible to have laminar flow in pipes at Reynolds numbers much higher than 2000.
However, the slightest disturbances will trigger the onset of turbulence at high values of Re.
Because most engineering applications involve some vibration or flow disturbance, it is
reasonable to expect that pipe flow will be laminar for Reynolds numbers less than 2000
and turbulent for Reynolds numbers greater than 3000. When Re is between 2000 and
3000, the type of flow is very unpredictable and often changes back and forth between lam-
inar and turbulent states. Fortunately, however, most engineering applications either are not
in this range or are not significantly affected by the unstable flow.
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FIGURE 10.3

Schematic diagram of
apparatus used by Reynolds
to study laminar and
turbulent flow.

Glass pipe

" example 10.2

- ne

Oil (S = 0.85) with a kinematic viscosity of 6 x 10* m”/s flows in a 15-cm pipe at a
rate of 0.020 m?/s. What is the head loss per 100-m length of pipe?

Solution  First we determine whether the flow is laminar or turbulent by checking to
see if the Reynolds number is below 2000 or above 3000. o

3 3
v=0_ Q.Q?Orr;/z: Q.OZO mz/s2 = 1.13 m/s
A @/4)D" m”  0.785(0.15" m")
Thi | o VD _ (113 m/2(0;215 m) _
| v 6x10 "'m"/s
Since the Reynolds number is less than 2000, the flow is laminar. The head loss per 100
m is obtained from Eq. (10.17):

283

= 3LV
e 8D
Here /W=h) g; hence
g

= 32vLV
hf’" 2
, gD
b= 326107 m2/8)2(100 mz)(l:.le m/S) _oe3m
(9.81 m/s7)(0:15" m")

Then

The head loss'is 9.83 m/ 100 m of length. - <

Kerosene (0°C) flows under the action of gravity in the pipe shown, which is 6 mm in
diameter and 100 m long. Determine the rate of flow in the pipe.




10.3__CRITERION FOR LAMINAR OR TURBULENT FLOW IN A PIPE 375

Elevation = 1 m

s Elevation = 0

! 100 m *—1|

Solution Because the pipe diameter is small and because the head producing flow is
also quite small, it is expected that the velocity in the pipe will be small. Hence it will
be initially assumed that the flow is laminar and V-/2 g is negligible. Then, to solve for
the velocity, we apply the energy equation to the problem. We write this equation be-
tween a section at the upstream liquid surface and the outlet of the pipe. Thus we have

v

2 >
% ‘ v
By, =P % 2+z2+3%ﬂv

*6‘ 2g 1 Nf 2g ,gz
With the assumption we have noted, this equation reduces to
040+1=0+0+0+2mLV
2
gD
or 3PLY ‘%V =1
¥D

For 0°C the viscosity (from Figs. A.2 and A3 in the Appendix) is

v =39x%x10"°%m%/s

_ _1(8010 N/m”)(0.006> m?)
32(32x 107 N - s/m%)(100 m)

=0.0282 m/s = 28.2 mm/s

Now check Re to see if the flow is laminar, and check V>/ 2g to see if it is indeed
negligible: ’
Re = VD _ (0.0282 m/5)(0.006 m)
CT T 6 2
39%x 107 m"/s

V* _ (0.0282 m/s)>
2g  (2)(9.81 m/s)

=434

=4.05%x10" m (negligible)y

Therefore, the flow is laminar and the velocity is valid. The discharge is then calculated
as follows:

0= VA= (0282 m/s)@(().()% m?=797x10"m’/s <
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FIGURE 10.4

Apparent shear stress in a

Dipe. [After Laufer (2)]
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Turbulent Flow in Pipes

Turbulence and Its Influence in Pipe Flow

In the preceding section it was pointed out that pipe flow is turbulent when the Reynolds
number is larger than approximately 3000. However, to say that the flow is turbulent is
only a gross description of it. We can obtain a better “feel” for the flow by exploring the
similarities between turbulent flow in a pipe and flow in a turbulent boundary layer and
by relating the shear stress in the pipe to the level of turbulence. Once we understand
these basic physical relationships, we will be better equipped to proceed to the development
of equations for the velocity distribution and the resistance to turbulent flow in pipes.

The similarities between turbulent boundary-layer flow and turbulent flow in pipes
are many. In fact, it is valid to think of turbulent flow in a pipe as a turbulent boundary
layer that has become as thick as the radius of the pipe. With this perspective we realize
that flow in a smooth pipe has a viscous sublayer just as a flat-plate boundary layer does.
In addition, the velocity gradient in the viscous sublayer will be consistent with the shear
stress, as given by ¢ = pAdu/ dy. However, outside the viscous sublayer the viscous shear
stress is negligible corhpared with the resistance resulting from turbulence. We have al-
ready referred in Chapter 9 to the apparent shear stress, Lapp = —?L/v’, which involves an
exchange of momentum, but its effect is like that of a true shear sfress. It is zero at the pipe
center and increases to a maximum near the wall, as shown in Fig. 10.4. Here it is seen
that the apparent shear stress increases linearly almost to the edge of the pipe. This linear
change in T,y is in accordance with Eq. (10.3), which was developed in Section 10.1.
Near the wall, in the viscous sublayer, Tapp feduces to zero because all of the shear stress
there is in the form of viscous shear stress.

We have shown that there are indeed many analogies between turbulent boundary-
layer flow and turbulent flow in pipes. The primary difference is that pipe flow is uni-
form and boundary-layer flow is not. Of course, this difference does not apply near the
inlet of the pipe, where the flow is nonuniform.
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FIGURE 10.5
Velocity distribution for

smooth pipes. [After
Schlichting (3)]
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Velocity Distribution and Resistance in Smooth Pipes

Experiments have shown that, in the viscous sublayer and in the turbulent zone near the
wall, the velocity distribution equations are of the same form as those for the turbulent
boundary layer. That is, for a smooth pipe,

u

*

Fl=

ﬁ:% for 0 <

o os (10.18)
3 .
=575 1ogf%¥ +55 for20 < F<10° (10.19)

Figure 10.5 is a plot of Eqgs. (10.18) and (10.19) as well as an indication of the range of
experimental data from various sources. For flow near the center of the pipe, as for flow
near the outer limit of the boundary layer, the velocity defect law is applicable, as shown
in Fig. 10.6. Figure 10.6 also includes the range of experimental velocity data obtained
from flow in rough conduits. Again, a power-law formula like that for the turbulent
boundary layer is applicable everywhere except close to the wall, This formula is

u

umax

-G

(10.20)
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FIGURE 10.6

Velocity defect law for
turbulent flow in smooth
and rough pipes. [After
Schlichting (3)]
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Here y is the distance from the wall and m is an empirically determined quantity. Some
references indicate that m has a value of 1/7 for turbulent flow. However, Schlichting (3)
shows that m varies from 1/6 to 1/10 depending on the Reynolds number. His values
for m are given in Table 10.1.

In Chapter 9 the local shear stress on a flat plate was expressed as

Vo
tO = Cl??

where ¢ is a function of the character of flow (laminar or turbulent) and the Reynolds
number. For pipe flow it is customary to express T, in a similar manner; however, we use
the mean velocity as the reference velocity, and the coefficient of proportionality is given
as f/4 instead of ¢y Here fis called the resistance coefficient or friction factor of the
pipe. Thus we have

« 4 g e
o 23x10 1L1x10 11x10 L
Reo>  4x10° P L 32x10f
N L L 1 L 1
m 6.0 6.6 70 8.8 10.0
VIV = 0.791 0.807 0.817 0.850 0.865

source: Schlichting (3). Used with permission of the McGraw-Hill Companies.
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2

A
to= 5? 5 (10.21)

Or, because ,/ty/p = ux, we have
e _ J[
Vv 8

Noting that 7 = 1y when r = r;, in Eq. (10.3), we can eliminate 7, between Eqs. (10.3)
and (10.21). Then, by integrating between two sections along the pipe, we obtain

2
LV
hl—l’lzz BQE
V2
he=fr=X
f flg2g (10.22)

where /1, is the head loss created by viscous effects and is equal to the change in piezo-
metric head along the pipe. Equation (10.22) is called the Darcy-Weisbach equation. It i3
named after Henry Darcy, a French engineer of the nineteenth century, and Julius Weis-
bach, a German engineer and scientist of the same era. Weisbach first proposed the use of
the nondimensional resistance coefficient, and Darcy carried out numerous tests on water
pipes. Brief accounts of their work are given by Rouse and Ince (4). It can be easily
shown by a simultaneous solution of Egs. (10.17) and (10.22) that the resistance coeffi-
cient for laminar flow is given by

-t
f Re

For turbulent flow, analytical and empirical results on smooth pipes yield the following
approximate relation for f

-}} =2 log(Ref)~0.8  forRe > 3000 (10.24)

(10.23)

Equation (10.24) was first developed by Prandtl.

Velocity Distribution and Resistance—Rough Pipes

Numerous tests on flow in rough pipes all show that a semilogarithmic velocity distribu-
tion is valid over most of the pipe section (5, 4). This relationship is given in the follow-
ing form:

X =57510g2+B (10.25)
U k

Here y is the distance from the rough wall, & is a measure of the height of the roughness
elements, and B is a function of the character of roughness. That is, B is a function of the
type, concentration, and size variation of the roughness. Research by Roberson and Chen
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proportional to V; thus f becomes constant for these conditions. The effect of roughness
can be summarized by (13)

k
(BS) Re < 10 roughness unimportant, pipe considered smooth

k
(BS) Re > 1000  fully rough, f independent of Reynolds number

The region between these limits is the transitional roughness regime.

The uniform character of the sand grains used in Nikuradse’s tests produced a dip
in the f~versus-Re curve (Fig. 10.7) before the curve reached a constant value of f. How-
ever, tests on commercial pipes where the roughness is somewhat random reveal that no
such dip occurs. Using data from commercial pipes, Colebrook (14) in 1939 devel-
oped an empirical equation, called the Colebrook-White formula, for the friction
factor. Moody (4) used the Colebrook-White formula to generate a design chart simi-
lar to that shown in Fig. 10.8. This chart is now known as the Moody diagram for com-
mercial pipes.

Boundary Material k,, millimeters ; k,, inches
Glass, plastic Smooth Smooth
Copper or brass tubing 0.0015 6 x 107
Wrought iron, steel 0.046 0.002
Asphalted cast iron 0.12 0.005
Galvanized iron 0.15 0.006
Cast iron 0.26 0.010
Concrete 031t03.0 0.012-0.12
iveted steel 099 0.035-0.35
Rubber pipe (straight) l 0.025 0.001

In Fig. 10.8 the variable ; is the symbol used to denote the equivalent sand rough-
ness. That is, a pipe that has the same resistance characteristics at high Re values as a
sand-roughened pipe of the same size is said to have a size of roughness equivalent to
that of the sand-roughened pipe. Table 10.2 gives the equivalent sand roughness for vari-
ous kinds of pipes. This table can be used to calculate the relative roughness for a given
pipe diameter, which, in turn, is used in Fig. 10.8 to find the friction factor.

In Fig. 10.8 the abscissa (labeled at the bottom) is the Reynolds number Re, and the
ordinate (labeled at the left) is the resistance coefficient f. Each blue curve is for a con-
stant relative roughness k;/D, and the values of k,/D are given on the right at the end of
each curve. To find f, given Re and k,/ D, one goes to the right to find the correct relative
roughness curve. Then one looks at the bottom of the chart to find the given value of Re
and, with this value of Re, moves vertically upward until the given k,/D curve is
reached. Finally, from this point one moves horizontally to the left scale to read the value
of f. If the curve for the given value of k./D is not plotted in Fig. 10.8, then one simply
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FIGURE 10.8
Resistance coefficient f versus Re. Reprinted with minor variations. [After Moody (5). Reprinted with permission from the
ASME.]
finds the proper position on the graph by interpolation between the k/D curves that
bracket the given &,/ D.
For some problems it is convenient to enter Fig. 10.8 using a value of the parameter
Re f 2. This parameter is useful when hyand k /D are known but the velocity V is not.
Without V the Reynolds number cannot be compu%ed, s0 f cannot be reald1 /lgy enterli?
«-) —noao : the chart with Re and &,/ D. But from he=f(L/D)V°/2g [orV = (2ghy/L) “(D/f)"]
and Re = VD/§, one can see that Re can be given as
’ 312 112
D>“r2gh
£l

Upon multiplying both sides of the above equation by 2, we get

D3/2
—.5;(2g/’lf/L)

Ref1/2 — 172
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Thus a value of Re f2 can be calculated for this type of flow problem, which, in turn,
enables us to determine f directly, using Fig. 10.8, where curves of constant Re 2 are
plotted slanting from the upper left to lower right and the values of Re f2 for each line
are given at the top of the chart.

When using computers to carry out pipe flow calculations, it is much more conve-
nient to have an equation for the friction factor as a function of Reynolds number and rel-
ative roughness. By using the Colebrook-White formula, Swamee and Jain (15)
developed an explicit equation for friction factor, namely

0.25
2

ky 574

1 S Lol
[ ng[3-7D ’ ReO'gﬂ

It is reported that this equation predicts friction factors that differ by less than 3% from those
on the Moody diagram for4 x 10° < Re < 10%and 10° < k/D <2 x 10

There are basically three types of problems involved with uniform flow in a single
pipe. These are

(10.26)

1. Determine the head loss, given the kind and size of pipe and the flow rate.

2. Determine the flow rate, given the head loss, kind, and size of pipe.

3. Determine the size of pipe needed to carry the flow, given the kind of pipe, head,
and flow rate.

In the first type of problem, the Reynolds number and k,/D are first computed and then
Jf1is read from Fig. 10.8, after which the head loss is obtained by the use of Eq. (10.22).

Water (7' = 20°C) flows at a rate of 0.05 m’/s in a 20-cm asphalted cast-iron pipe.
What is the head loss per kilometer of pipe?

Solution First compute the Reynolds number, VD7 })Z;Here V= 0/A. Thus

0.05 m>/s |
(p/4)(0.20° m?)
W=10x10°mY/s  (from Table A.S)

V= = 1.59m/s

=3.18x10°

Then Re = ‘_/Q — (1.59 m/s)(0.20 m)
6 2
10 "m™/s

From Table 10.2, the roughness for asphalted cast-iron pipe is 0.12 mm, so the relative
roughness (ky/ D) is 0.0006. Then from Fig. 10.8, using the values obtained for ky,/D
and Re, we find /' = 0.019. Finally, the head loss is computed from the Darcy-Weisbach
equation:
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P g 22,2 i o
Vv lOOOm 1.59" m"/s ~ N

i =fL 0019( ) s i
T D2 0.20 m {2(981m/s )J w o,

The head Ibsyysy per",kilometer is 12.2 m.

In the second type of problem, k./D and the value of (D3/2/ ) |2ghs/ L are com-
puted so that the top scale can be used to enter the chart of Fig. 10.8. Then, once fis read
from the chart, the velocity from Eq. (10.22) is solved for and the discharge is computed
from Q = VA.

>

The head 1oss per kﬂometer of 20 -cm asphalted cast~1ron pipe is 12.2 m. What is the
discharge of water? i

Solution Fxrst compute the parameter D" /Zghf/ L/ b Assume I= 20°C so that

3/2A/2ghf/L '(0 20 )3/2[2(9 81 m/s )(12 2 m/1000 m)]
: ; ' 10>< 10 m’/s

—438><10

From Table 10.2, the roughness f()r asphalted cast-iron pipeis 0.12 mm, so the relative
roughness (k,/D) is 0.0006. Using Fig. 10.8, we read f = 0. 019 We use this fin the
P Darcy-Weisbach equation to solve for Vi :

LV

D2g ’
0.019(1000 m)  V*

- 020m 2981 m/s%

hf=

122m=

V2 =252m%/s?
V=159m/s

Finally we compute the dis,’charge:

O=VA= Vg"D2
= (1.59 m/$)(0.785)(0.20* m%) = 0.050 m*/s <

Examples 10.4 and 10.5 are good checks on the validity of the methods of solution
because their basic data are exactly the same—in one case, the head loss is unknown; in
the other, the discharge is unknown.
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In Example 10.5 the head loss in the pipe was given. Therefore 1t was possible to
obtain a direct solution by entering Fig. 10.8 with a value of Re /2. However, many
problems for which the discharge Q is desired cannot be solved dlrectly For example, a
problem in which water flows from a reservoir through a pipe and into the atmosphere
cannot be solved directly. Here part of the available head is lost to friction in the pipe,
and part of the head remains as kinetic energy in the jet as it leaves the pipe. Therefore,
at the outset one does not know how much head loss occurs in the pipe itself. To effect a
solution, one must iterate on f. The energy equation is written and an initial value for fis
guessed. Because f tends to a constant value at high values of Re, an “educated” first
guess is to use this limiting value of f. Next one solves for the velocity V. With this value
of V, one then computes a Reynolds number that makes it possible to determine a better
value of f using Fig. 10.8, and so on. This type of solution usually converges quite rap-
idly because f changes more slowly than Re. Once f and V have been determined, one
calculates the discharge by using the continuity equation.

- Determine the discharge of water through the 50-cm steel pipe shown in the figure. |

o — Elevation = 60 m

D=50cm Steel pipe

|- —Elevation=40m

Solution From Table 10.2, the roughness for steel pipe is 0.046 mm, so the relative
roughness (k,/D)is 9.2 x 10-3. Now write the energy equation from the reservoir wa-
ter surface to the free jet at the end of the pipe:

Dy g _PD Lz

1 2
pAA S PR 1 + +h :
§/ 2¢g @t g 28 i

12
Vs

0+0+60=0+-—=+40+
+ +2g+ fgzg

or

_ (23 X 20)”2
1 +200f
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- First trial: Assume f=0.020; then V=886m/s and Re = 4.43 x 10°, With
Re = 4.43 x 10% and k,/D = 9. 2 x 1073 thenf 0.012 (from Fig. 10.8). This f then

yields V = 10.7 m/s.
Second trial: For V. =10.7 m/s,Re = 5.35 x 10% and f= 0.012,

0=VA=10Tm/sX@®/4)x (050’ m*=210m’/s 4

‘This example can also be solved using a programmable calculator and the ex-

plicit equation for the friction factor, Eq. (10.26). The procedure is to write a program

that, given a velocity, calculates the Reynolds number, then calculates the friction
factor from Eq. (10.26) and, finally, calculates the velocity from the above equation.
This velocity is then entered again and a new velocity is calculated until the velocity
no longer changes. The following table gives the velocities calculated starting with an
initial guess of 20 m/'s and finishing when the velocity difference between iterations
is less than 0.01.

1stiteration  20.0
2nd iteration. .- 10.73
3rd iteration . 10.67

" The convergence is fast because the friction factor is a very weak function of Reynolds

number.

In the third type of problem, it is usually best to first assume a value of £ and then to
solve for D, after which a better value of fis computed based on the first estimate of D.
This iterative procedure is continued until a valid solution is obtained. A trial-and-error
procedure is necessary because without D one cannot compute k,/D or Re to enter Fig.
10.8.

What size of asphalted cast-iron pipe is required to carry water at a discharge of 3 cfs
and with a head loss of 4 ft per 1000 ft of pipe?

Solution First assume f = 0.015. Then

2 2,42 2
p=ILV QYA fL
D2 D 28 oy’

or ——-—————-fLQ
0.785%(2ghy)
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For this example, .

_0. 015(1000 ft)(3 ft’ /s)

0852 ft
0.615(64.4 ft/s)(4 ft)
D =097 ft ‘
Now compute a more accurate value of
ks — 0.0004 v=2-_ 30/ _ 40755
| Drosoan A 0785(0.94 ft)
Then  Re= YD _ (407 ft/s)(O 97 ft) — 396% 10°

1.21(107 fi*/s)

From Fig. 10.8, f 0 0175 Now recompute D by applymg the ratio of f’s to previous
calculations for D>:

s 0.0175 '
D 0015 (0852ft)—0994ft
D =10.999 ft
: Use a plpe W1th a 12-in. diameter. <«

Note: If a size that is not available commercially is calculated during design, it is cus-
tomary practice to choose the next larger available size. The cost will be less than that
for odd-sized pipe, and the pipe will be more than large enough to carry the flow.

Explicit Equations for Q and D

In the foregoing discussion, methods were presented by which Q and D can be calculated.
All of these methods involve the use of the Moody diagram (Fig. 10.8).

To provide an alternative to the Moody diagram, Swamee and Jain (15) developed
an explicit equation for discharge:

sn kg
=-2722D h/ L1
0= A 81 0g[3 7D D

1 78 J (10.27)

ghy/'L

They also developed a formula for the explicit determination of D. A modified version of
that formula, given by Streeter and Wylie (16), is

475
D= 066[k1 ZS(LQ )
hy

0.04

+ QQ94( f)s QJ ’ (10.28)

If you want to solve for head loss given Q, L, D, k,, and v, simply solve for f by Eq.
(10.26) and compute A, with the Darcy-Weisbach equation, Eq. (10.22). Straightforward cal-
culations for Q and D can also be made if 7, is known. However, for problems involving
head losses in addition to A, an iterative solution is required. For computing Q, you can
assume an f and solve for Q from the energy equation after substituting Q/A in that
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equation. Then compute Re and use the result in Eq. (10.26) to get a better estimate of f,
and so on, until Q converges analogous to the procedure for determining Q using the
Moody diagram. In this case, however, Eq. (10.26) is substituted for the Moody diagram.
Similarly, you can determine D if you are given Q, v, the change in pressure or head, and
the geometric configuration.

 Solve Example 10.5 using Eq. (1027). | L

Solution From Table 10.2, k, for asphalted cast-iron pipe is given as 1 2 X 10‘4 m. From

the given conditions, hi/L = 0 0122 Assume 7' = 20°C sowv= (10 m’/ s) Then us-
ing Eq (o. 27), we have A

‘Q = _222(0.20 m)5’2J9 81 m/s°x 0.0122
‘ Xlog(lelO m, 1.78 x 10°° m>/s )
37x020m 656 my32,/0.81 m/stx 0.0122

Flow at Pipe Inlets and Losses from Fittings

In the preceding section, formulas were presented that are used to determine the head
loss for uniform flow in a pipe. However, pipe systems also include inlets, outlets, bends,
and other appurtenances that create additional head losses. The resulting flow separation
and the generation of additional turbulence force usually cause these head losses. In this
section we will consider the flow patterns and resulting head losses for some of these
flow transitions.

Flow in a Pipe Inlet

If the inlet to a pipe is well rounded, as shown in Fig. 10.9, the boundary layer will de-
velop from the inlet and grow in thickness until it extends to the center of the pipe. Af-
ter that point, the flow in the pipe will be uniform. The length L, of the developing
region at the entrance is equal to approximately 0.05DRe for laminar flow and approx-
imately 50D for turbulent flow. Velocity and pressure distribution for the inlet region
of a pipe with turbulent flow are shown in Fig. 10.10. The head loss that is produced by
inlets, outlets, or fittings is expressed by the equation

2

hy = KL (10.29)

2g
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Description Sketch Data K Source
Ky Ky
Expansion D,/D, u = 20° u = 180° amn
0.0 1.00
0.20 0.30 0.87
0.40 0.25 0.70
0.60 0.15 0.41
hy = KpVi/2g 0.80 0.10 0.15
90° miter bend Without K,=11 (23)
vanes
With K,=02 (23)
vanes
90° smooth bend r/d 24
and
1 K, = 0.35 (17
2 0.19
4 0.16
6 0.21
8 0.28
10 0.32
Threaded Globe valve—wide open K,=10.0 (23)
pipe Angle valve—wide open K,= 50
fittings Gate valve—wide open K,= 02
Gate valve—half open K, = 56
Return bend K,= 22
Tee
straight-through flow K = 04
side-outlet flow K =18
90° elbow K, = 09
45° elbow K, = 04

<

TReprinted by permission of the American Society of Heating, Refrigerating and Air Conditioning Engineers, Atlanta, Georgia,
from the 1981 ASHRAE Handbook—Fundamentals.

"~ example 10.9

If oil (\3= 4% 107 m%/ s,5 = 0.9) flows from the upper to the lower reservoir at a
rate of 0.028 m?/s in the 15-cm smooth pipe, what is the elevation of the oil surface in
the upper reservoir?
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Elevation = ?

Elevation
130 m

!“ 130 m

Solution Apply the energy equation between the surfaces of the upper and lower

reservoirs: ‘
2 2
PV P Vs
I e A Tl i I b SUViE S
728Z1,7128222L S
LV VooV
O+O+z1=O+0+130m+-55é+2Kb5§+K85§+KEZg

Here K, K,, and Ky, are loss coefficients for bend, entrance, and outlet, respectively.
These have values of 0.19, 0.5, and 1.0 (Table 10.3). To determine /> we get Re in order
to enter Fig. 10.8: g

But

: 3
V= % = OBmM/S) _ | 58my/s

0.785(0.15 m)*
Then

Re = L8 m/8(015m) _ 53 403

4x107 m%/s
Now we read f from Fig. 10.8 (smooth pipe curve): f = 0.035. Then

2
_ V270.035(197 m)
=1 2| VU097 m)
4= 130m+ [ 015 m

F +2(0.19)+ 05 + 1]

(1.58 m/s)2
2(9.81 m/s?)

=130m+6.1m=136.1m <

=130m+{: }(46+O.38+0.5+1)
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Refer to Fig. 10.14. The difference in water-surface elevation between the reservoirs is
5.0 m, and the horizontal distance between them is 300 m. Using the explicit formula
- for f, Eq. (10.26), determine the size of steel pipe needed for a discharge of 2 m’/s
- when the gate valve is wide open. , , : :

Sol;@tion First write the enérgy equation;
o 3 )
Py W
— 4+ — 7 =Ltz 40 h,
¥ 2¢ ! { 2¢ 2 L

: 2
| =£(%+Ké+KV+KE) ;
= —=—=(fx300/D+0.5+02+1.0)
2gA ~ ‘
ot (b)
=—=2%— 1300(L )|+ 17
2e4)°D'L \D ]
A S
= Gm/s) 4[300(1)“.7}
2x9.81 m/s”x @r4)*x 'L \D

_ 033w f L
- (300 Ly 1.7)

D4

The other equations for solving this problem are Eq. (10.26), V = Q/A, and
Re = VD/-6AS we did when using the Moody diagram, we make an initial assump-
tion for D. Next we compute V and Re, after which we compute f from Eq. (10.26).
Then we compute D from the energy equation (above). With this calculated value of D
we go through the process again to get a better estimate of D, and so on, until the
change in D is negligibly small. In this example, = 10" m’/s and k, = 4.6 x 10°
m (from Table 10.2). We assume an initial value for D of 1 m. Then

3
V=0/A= ——Z—mﬁ——i =255 m/s
(p/4)x (1 m)
Re =%?=2.55x1—;:5 =2.55% 10°
L i 74 P
F=025 [log( s --—ﬂ
3.70 Reo-9

-5 -2
= 025|10g| 2010 m 574 = 00116
37x1Im (5 55, 108)%
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With this value of f, we solve the energy equation for D to obtain
D =0.79 m :

With D = 0.79 m we repeat the computational procedure agam and again, until conver-
gence. The next iteration yields D = 0.79 m. Since there is no 51gn1ﬁcant change, we
have a solution: D =0.79 m. : : S s

Pipe Systems

Simple Pump in a Pipeline

We have considered a number of pipe flow problems in which the head for producing the
flow was explicitly given. Now we shall consider flow in which the head is developed by
a pump. However, the head produced by a centrifugal pump is a function of the dis-
charge. Hence a direct solution is usually not immediately available. The solution (that
is, the flow rate for a given system) is obtained when the system equation (or curve) of
head versus discharge is solved simultaneously with the pump equation (or curve) of
head versus discharge. The solution of these two equations (or the point where the two
curves intersect) yields the operating condition for the system. Consider flow of water in
the system of Fig. 10.15. When the energy equation is written from the reservoir water
surface to the outlet stream, we obtain the following equation:

2 2
" _D Va fLV
h —= EK > —

+z + +2g+z2+ Ly, 22

For a system with one size of pipe, this simplifies to

2

h, = (zZ—z1)+2Zé(1 +ZKL+%) (10.30)

Hence, for any given discharge, a certain head h, must be supplied to maintain that flow.
Thus we can construct a head-versus-discharge curve as shown in Fig. 10.16. Such a curve
is called the system curve. Any given centrifugal pump has a head-versus-discharge curve
that is characteristic of that pump at a given pump speed. Such curves are supplied by the
pump manufacturer; a typical one for a centrifugal pump is shown in Fig. 10.16.

Figure 10.16 reveals that, as the discharge increases in a pipe, the head required for
flow also increases. However, the head that is produced by the pump decreases as the dis-
charge increases. Consequently, the two curves intersect, and the operating point is at the
point of intersection—that point where the head produced by the pump is just the amount
needed to overcome the head loss in the pipe.
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" Solution First we write the energy equation from water surface to water surface:

p1+‘V?+z +h ;_p2+V§+Z +Zh
‘g 28 1 P '8 2g 2 L
2

| 0404200+, O+Q+23O+(D+K8+Kb’+[( ¥

 HereK, =’O.'5,"K;, = 0.35, and K =1.0. Hence ‘

L aga 2R T0015(1000) . < e . o
s ! 04p, oot 1]

2

=30+ — g —5(393) = 0m+1270°m
' 2% 981 x[(p/4)x04 . pan e
Now we make a table of O versus A, (see beloW) to give values to pfoduce a syStem
curve that will be plotted with the pump curve. When the system curve is plotted on the

 same graph as the pump curve, it is seen (Fig. 10.16) that the operating condition oc-
cursat 0 =027 m™/s. o g e

<
2

1270
0,m’s mbs? h,=30m+127¢" m
0 g 30
0.1 1x107 13, 313
0.2 4107 SL i asy
03 Ix 1072 A A4

Pipes in Parallel

Consider a pipe that branches into two parallel pipes and then rejoins, as shown in
Fig. 10.17. A problem involving this configuration might be to determine the division of
flow in each pipe, given the total flow rate.

No matter which pipe is involved, the pressure difference between the two junction
points is the same. Also, the elevation difference between the two junction points is the
same. Because h; = (p,/ ¥+ z;) — (p,/ ¥+ z,), it follows that /; between the two junc-
tion points is the same in both of the pipes of the parallel pipe system. Thus we can write

hLl = hLz
LV LV
/1D,2g /2D, 2
148 248
V1)2 _[L,D Vi szle)m

Then ( = or
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and Oy 4 = 0.0346 and @y ~ = 0.0693. These values are substituted into the matrix equa-
tion to solve for the AQ’s. The dlscharges are corrected by Q" = QO o AQ and sub-
stituted into the matrix equatlon again to yield new AQ’s. The iterations are continued
until sufficient accuracy is obtained. The accuracy is judged by how close the column ma-
trix on the right approaches zero. A table w1th the results of iterations for this example is
shown below.

: Tteration
 Initial 12 3 4
0, 00346 00328 00305 00293 00287
Qp 00346 00393 00384 00394 00384
Qc 00693 00721 00689 0.0687 0.0671

This solution technique is called the Newton-Raphson method for nonlinear systems of
algebraic equations. It can be 1mplemented easﬂy ona computer The solution proce-
dure for more complex systems is the same.

Turbulent Flow in Noncircular Conduits

Basic Development

Earlier in this chapter (Section 10.4), T, was eliminated between Egs. (10.3) and (10.21) to
yield the Darcy-Weisbach equation, Eq. (10.22). It should be noted that Eq. (10.3) was de-
rived by writing the equation of equilibrium in the longitudinal direction for an element of
fluid with a circular cross section. If one derives an equation analogous to Eq. (10.3) for
flow in a noncircular conduit in which the shear stress acts on the conduit surface having a
perimeter P (such as the perimeter of a rectangular conduit) instead of perimeter 27, then
T( 1S given by

—Ard . .o
=3 5P +¥0)| (10.35)

In Eq. (10.3), to which Eq. (10.35) is analogous, the shear stress 7, was everywhere con-
stant around the perimeter of the cylindrical element. In Eq. (10.35) for the noncircular
conduit, the shear stress is not constant over the perimeter. However, we can still use
Eq. (10.21) to relate Ty and V, where 7, is now the average shear stress on the boundary.
Eliminating 7, between Egs. (10.21) and (10.35) and integrating along the pipe yields
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_fLV
! 4A/P2g (10.36)

In Eq. (10.36), Ais the head loss between two points in the conduit, L is the length be-
tween the points, and P is the wetted perimeter of the conduit. Thus Eq. (10.36) is the
same as the Darcy-Weisbach equation except that D is replaced by 4A/P. The ratio of
the cross-sectional area A to the wetted perimeter P is defined as the hydraulic radius R,
Obviously, for flow of a gas the wetted perimeter P is the perimeter of the duct. Experi-
ments have shown that we can solve flow problems involving noncircular conduits, such
as rectangular ducts, if we apply the same methods and equations that we did for pipes
but use 4Ry, in place of D. Consequently, the relative roughness is k,/4R,, and the Rey-
nolds number is defined as V(4R;)/ ».

, ,Alr (T = 20°C and p= 101 kPa absolute) ﬂows at a rate of 25m /sina commerc:lal
- steel rectangular duct 30 cm by 60 cm. What is the pressure drop per S0m of duct?

";Solutwn Fxrst compute Re and k / 4R i

V<4Rh>

CiRe L

Here L === 170 o

’ | The"hydraulic radius is givé,n by '

4R, =4(0.10m) =040m
V= 151x107 m’s
Re = 139040 _

2= 3.68%10°
151><10‘
ki 46%x10° m 4
—s = 20X 10 m_ 5,090
AR, T 040m x

Then from Fig. 10.8, f = 0.015. Thus

o LV
f 4R, 2¢

or
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: ?zl.Zkg'/mz’f ‘
- Finally, L TE |
. Appper50m = 99—1-5—(—5-9—‘—@(‘1~~.2N.s2/m4)1§;9~,m,2/s?:217 Dy

040 m 2

Uniform Free-Surface Flows

A free-surface flow signifies the flow in a channel or duct with the surface open to the at-
mosphere. These flows are also known as open-channel flows. Such flows are encoun-
tered in culverts and irrigation canals. In this case there is no pressure gradient in the
flow direction, so the change in piezometric pressure or head is due solely to elevation
changes (gravity effects). Also, the hydraulic radius is based on the wetted area, so the
portion of the perimeter on the free surface is not included. A uniform flow requires that
the velocity be constant in the flow direction, so the shape of the channel and the depth of
fluid will be the same from section to section. Figure 10.20 is an example of uniform
free-surface flow in a channel with a rectangular cross section. Note here that the veloc-
ity varies across the section but does not change in the flow direction. A more extensive
discussion of open channels with nonuniform flows is provided in Chapter 15.

The criterion for determining whether the flow in open channels will be laminar or
turbulent is similar to tha for flow in pipes. Recall that in pipe flow, if the Reynolds
number (VDF/ py = VD/?&») is less than 2000, the flow will be laminar, and if it is greater
than about 3000, one can éxpect the flow to be turbulent. The Reynolds number criterion
for open-channel flow is the same if we replace D in the Reynolds number by 4R;, as we
did in the Darcy-Weisbach equation in the preceding subsection. Thus, we can expect
laminar flow to occur in open channels if V(4R,)/ D < 2000. The Reynolds number for
open channels is usually defined as VR,/%. Therefore, in open channels, if the Reynolds
number is less than 500, we will have laminar flow, and if it is greater than about 750, we
can expect to have turbulent flow. A brief analysis of this turbulent criterion will show
that water flow in channels will usually be turbulent unless the velocity and /or the depth
is very small. Example 10.14 illustrates this point.

N
5

CTE VL

AV LWL Ty WV [

EPIR

FIGURE 10.20

| Tous_wil

Open-channel relations.

Side view End view
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It should be noted that the wetted perimeter used for calculating the hydraulic ra-
dius is the perimeter of the channel that is actually in contact with the flowing liquid. For
example, in Fig. 10.20 the hydraulic radius of this channel of rectangular cross section is

R I :

One can see that for very wide, shallow channels the hydraulic radius approaches
the depth y.

Water (60°F) flows in a 10-ft-wide rectangular channel at a depth of 6 ft. What is the
Reynolds number if the mean velocity is 0.1 ft/s? With this velocity, at what maximum
depth can we be assured of having laminar flow? S

, :Solutyion Re = VR, /Q

where C V=01ft/s

R,=A/P=By/(B+2y)
=(10x6)/(10+2x6)
2R

v =122x107 ft*/s (from Table A.5)

then Re = (0.1 ft/s)(2.73 f)/(1.22x 10” t*/s) = 22,377 o«

The maximum Reynolds number at which we can expect to have laminar flow in open
channels is 500. Thus, for this limit of Re and for a water velocity of 0.10 ft/s, we can
solve for the depth at which this condition will prevail:

Re = VR,/W= (0.10 ft/$)R,/ (122 x 107 */s) = 500
Solving for Rh yields" “ L ' o |
Ry, = (500)(1.22 % 10™° £2/5)/(0.10 ft/s) = 0,061 ft
For rectangular chanﬁels 2
Ry = (By)/(B+2y)

Thus (By)/(B+2y) = (10y)/(10 +2y) = 0.061 ft
y = 0.062 ft : <

Example 10.14 shows that indeed the velocity and/or depth must be very small to yield
laminar flow of water in a channel. Note also, the depth and hydraulic radius are virtually
the same for this case, where the depth is very small relative to the width of the channel.
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To determine the head loss for uniform flow in open channels, we utilize Eq. (10.36).
That is, the Darcy-Weisbach equation with D replaced by 4R, is used.

- Estim’ate,’the discharge of water that a concrete channel 10 ft wide can carry if the depth
~of flow is 6 ft and the slope of the channel is 0.0016. S g

! Solution We use the Darcy—Weisbach3 equation:

Saiy ik ’ ; ;2
LVP b f Y

Chy=

When we have uniform opeh—ch'annel ﬂoW, thé slope of the'EGL, Sy=hy/L,is the
same as th% channel slope S;. Therefore, hy/L = S,. The foregoing equation then re-
duces to V°/2g = 4R,,S/f, or R : : e

Assume k; = 0.005 ft. Then the relative roughness is
" ke _ 0005 ft 0.005 ft

ARy a0 fi/2fy 4273

= 0.00046

Using k,/4R,, = 0.00046 as a guide and referring to Fig. 10.8, we assume that
f=0.016. Thus ‘ Bl ‘ e

2 . T
i J8(32.2 ft/s %)(3.1763 10.006) - [5677/3 — 539 115

Then

Re V‘}% = 839 ft/s(10.960) _ 5 . 10

120107 £t2/s)

Using this new value of Re and with k /4R, = 0.00046, we read fas 0.016. Our initial
- guess was good; and now that the velocity is known, we can compute Q:

0 = VA =839 ft/s(60 ft*) = 503 cfs <

For rock-bedded channels such as those in some natural streams or unlined canals,
the larger rocks produce most of the resistance to flow, and essentially none of this resis-
tance is due to viscous effects. Thus, the friction factor is independent of the Reynolds
number. For this type of channel, Limerinos (28) has shown that the resistance coeffi-
cient f can be given in terms of the size of rock in the stream bed as
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where Q= 110f/s

n = 0.013
So = 0.006 (assume atmospheric pressure along the pipe)

C hen » AR = (L0 f° /5)O0013) _ 15 39 57
; Bty | (1.49)(0.006) "
. E I LA o (AVP
P AT R ,”(P)
e v 5/3
 Then | AR =47 — 1239 "
- ; : P2

: 4,"’Forap1peﬂowmg full A= nD /4 andP @D, or

D*/4)" = 1239 ™

L (PD)m

' Solvingkfo‘r ‘diameter yields D = 3.98 ft =47.8 in. Use the ,neXt“c’Qr’ﬁ,’r‘néi;"cial size
‘ ‘larger, WthhlSD 481n , ‘ - < 

~
A —L 50 3 ft (for plpe ﬂowmg full)

| | 'A (50.3ft)( o |

FIGURE 10.21

Culvert under a highway
embankment.

A culvert is a conduit placed under a fill such as a highway embankment. It is used to
convey streamflow from the uphill side of the fill to the downhill side. Figure 10.21 shows
the essential features of a culvert. Culverts are designed to pass the design discharge with-
out adverse effects on the fill. That is, the culvert should be able to convey runoff from a de-
sign storm without overtopping the fill and without erosion of the fill at either the upstream
or downstream end of the culvert. The design storm, for example, might be the maximum
storm that could be expected to occur once in 50 years at the particular site.

Roadway

Embankment

Culvert
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The flow in a culvert is a function of many variables, including cross-sectional
shape (circular or rectangular), slope, length, roughness, entrance design, and exit de-
sign. Flow in a culvert may occur as an open channel throughout its length, it may oc-
cur as a completely full pipe, or it may occur as a combination of both. The complete
design and analysis of culverts are beyond the scope of this text; therefore, only a sim-
ple example is included here. For more extensive treatment of culverts, please refer to
Chow (32), Henderson (33), and American Concrete Pipe Assoc. (34).

W example 10.21

" A 54-in.-diameter culvert laid under a highway embankment has a length of 200 ft and
~ aslope of 0.01. This was designed to pass a 50-year flood flow of 225 cfs under full
~ flow conditions (see the figure below). For these conditions, what head H is required?
- When the discharge is only 50 cfs, what will be the uniform flow depth in the culvert?
 Assume n = 0.012. o : : Cimio

4

, Solutioﬁ For the flood flow of 225 cfs, one must consider the entrance and exit head
~ losses as well as the head loss in the pipe itself; therefore, use the energy equation to

 solve this example. |
p2+’-§é+z2-1;zhL
; e 28
Let points 1 and 2 be a,ty‘the pstream and d ‘strea:n,Water surfaces, respectively.
Thus, : p=p=0 gage and V,=V,=0
Mm;?:°  V,Va—@=H :
Tawehle . Ho3H
' H - pipe ’headylo‘ss + entrance head loss + exit head loss
H = g(Ke +Kp) + pipe head loss
Aésume }
Ke = 0.50 (from Table 10.3)

Ky = 1.00 (from Table 10.3)
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- For the pipe head loss, use Eq. (,10.45)’:',

,'Q 149AR%/3S(1)/2"_4‘
1 where
g=25t's
A =B — 590 4
A ;
_A_¥DY4_D_ |,
Ben T E Lst
RP=q 125 ft)2/3 1.0 817ft2/3 |
h
=
So=7

Then Eq. (10.45) is written as

1 49
0.012

he=2.22 ft

_Q-w_mﬁft/s

; B n12
L (15.90 %)(1.0817 ft2/3)(—f—)

225 = 200

Solving for H,

1415
64.4

H=4.66ft+2.22 ft = 6.88 ft

For Q = 50 cfs, we need to use Eq. (10.45):

149 , o
50 = 0012AR’1 (001)

- aoss)
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However, this culvert will flow only partly full with a 0 of 50 cfs. Therefore, the phj/Si~
cal relationship will be as shown below. - S

a

I

Thus, if the angle g is given in degrees, the cross—sectidhal«ﬂdw' area will be giveh,'as "

A~ (BB o

~ The wetted perimeter will be P = ﬁD(u'/ 180°), or : .

R :é:(g)[1“ sinu cosu;)]

P o4l \p(8s180°)/]
Substituting these relations for A and R, into the disdharge‘ équaﬁon and éo]iliﬂg for 6
yields - S e o o

Depth of flow: e
=20 7 M= HER

Summary

Flow in conduits is important to a wide variety of industries. As noted in Chapter 7, the
analysis of a piping system requires information on the head (or pressure) loss to predict
flow rates, power delivery, or power requirements for system operation. The head loss is
given by the general equation

2 2

_N ALY v

h; = Zfézg + ZKzg
where fis the Darcy-Weisbach friction factor, L is the pipe length, D is the diameter, V'is
the mean velocity and K is a loss coefficient. The first group of terms represents the loss
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Problems

(6H] (2)

PROBLEM 10.1

10.1 Consider the mean-velocity profiles for flow in the pipes
shown. Match the profiles with the following: (a) turbulent
flow, (b) obviously a case of hypothetical flow (zero viscosity),
(c) laminar case, (d) & = 1.0, (¢) a = 1.05, () ¢ = 2.00.

10.2 Liquid in the pipe shown in the figure has a specific weight
of 8 KN/m". The acceleration of the liquid is zero. Is the liquid
stationary, moving upward, or moving downward in the pipe? If
the pipe diameter is 1 cm and the liquid viscosity is
30x 102 N-s/ m2, what is the magnitude of the mean velocity
in the pipe?

Elevation = 10 m — — p=110kPa

Elevation =0 m — - — p =200 kPa

PROBLEM 10.2

10.3 A viscous oil is contained in this cylinder/nozzle system
that has a vertical orientation. A valve is instantaneously opened
to let the oil drain out of the cylinder. Below are listed words that
might characterize the flow at point A. Which ones are valid
characterizations at the time when the oil surface reaches the
level of section 27 (a) unsteady, (b) steady, (c) irrotational, (d)
rotational, (e) nonuniform, (f) uniform.

104 Oil (S =097, gA= 107 Ibf-s/ft>) is pumped through a
1-in. pipe at the rate‘of 0.05 cfs. What is the pressure drop per
100 ft of level pipe?

AU 105 Liquid flows downward in a 1-cm, vertical, smooth pipe

with a mean velocity of 2.0 m/s. The liquic21 has a density of
1000 kg/ m’® anda viscosity of 0.06 N - s/m". If the pressure at

Vertical

Nozzle

Valve

PROBLEM 10.3

a given section is 600 kPa, what will be the pressure at a section
10 m below that section?

10.6 A liquid (p = 1000 kg/m3, p = 107" N+ s/2m% v =
10 mz/s) flows uniformly with a mean velocity of 1 m/s in a
pipe with a diameter of 8 mm. For this condition, will the veloc-
ity distribution be logarithmic or parabolic? What will be the
ratio of the shear stress at 1 mm from the wall to the shear stress
on the wall?

10.7 Glycerine at a temperature of 30°C flows at a rate of
8x 10~ m’/s through a horizontal tube with a 30-mm diameter.

What is the pressure drop in pascals per 10 m?

10.8 Kerosene (S = 0.80 and T = 68°F) flows from the tank

shown and through the 1/4-in.-diameter (ID) tube. Determine

the mean velocity in the tube and the discharge. Assume the only

head loss is in the tube.

1/a-in. diameter

10 # !

PROBLEM 10.8
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FLOW IN CONDUITS

109 Oil (S = 0.94, ’AF 0.048 N-s/ mz) is pumped through a
horizontal 5-cm pipe. Mean velocity is 0.7 m/s. What is the pres-
sure drop per 10 m of pipe?

10.10 SAE 10W-30 oil is pumped through an 8-m length of 1-
cm-diameter drawn tubing at a discharge of 7.85 x 104 m?/s.
There is a pump in the line as shown. The pipe is horizontal, and
* the pressures at points 1 and 2 are equal. Find the power necessary to
operate the pump, assuming the pump has an efficiency of 100%.
Properties of SAE 10W-30 oil: kinematic viscosity = 7.6 X
107 m2/s, specific weight = 8630 N/m>.

lcm

PROBLEM 10.10

1011 Oil (S =09; w =102 Ibf-s/f% v =0.0057 ft*/s)
flows downward in the pipe, which is 0.10 ft in diameter and has
a slope of 30° with the horizontal. Mean velocity is 2 ft/s.What
is the pressure gradient (dp / ds) along the pipe?

\S

PROBLEM 10.11

10.12 A fluid (n = 102N - s/m% p = 800 kg/m°) flows with
a mean velocity of 5 cm/s in a 10-cm smooth pipe. Answer the
following questions relating to the given flow conditions.

a. What is the magnitude of the maximum velocity in the pipe?

b. What is the magnitude of the resistance coefficient f?

c. What is the shear velocity for these flow conditions?

d. What is the shear stress at a radial distance of 25 mm from the
center of the pipe?

10.13 Kerosene (20°C) flows at a rate of 0.04 m3/s in a 25-cm
pipe. Would you expect the flow to be laminar or turbulent?
10.14 In the pipe system for a given discharge, the ratio of the
head loss in a given length of the 1-m pipe to the head loss in the
same length of the 2-m pipe is (a) 2, (b) 4, (c) 16, (d) 32.

[ 200 m {

f=0.01

PROBLEM 10.14

10.15 Glycerine (T = 68°F) flows in a pipe with a 1/2-ft di-
ameter at a mean velocity of 2 ft/s Is the flow laminar or turbu-
lent? Plot the velocity distribution across the flow section.

10.16 Glycerine (T = 20°C) flows through a funnel as shown.
Calculate the mean velocity of the glycerine exiting the tube. As-
sume the only head loss is due to friction in the tube.

30cm

20 cm

lcm

@ y
PROBLEM 10.16

10.17 What size of steel pipe should be used to carry 0.2 cfs of
castor oil at 90°F a distance of 0.5 mi with an allowable pressure
drop of 10 psi (. = 0.085 Ibf-s /ft)? Assume S = 0.85.

10.18 Mercury at 20°C flows downward in a long circular tube
that is open to the atmosphere at the top and bottom. The tube is
vertically oriented. Find the tube diameter for which the flow would
just become turbulent (Re = 2000).

10.19 Glycerine (20°C) flows in a 4-cm steel tube with a mean
velocity of 40 cm /s. Is the flow laminar or turbulent? What is the
shear stress at the center of the tube and at the wall? If the tube is
vertical and the flow is downward, will the pressure increase or
decrease in the direction of flow? At what rate?

10.20 A small tank with a tube connected to it is to be used as a
viscometer for liquids. Design a viscometer utilizing such equip-
ment. State all assumptions and describe the procedure for the
viscosity measurements. Assume that liquids to be measured will
range from kerosene to glycerine.

10.21 Velocity measurements are made across a 1-ft pipe. The
velocity at the center is found to be 2 fps, and the velocity distri-
bution is seen to be parabolic. If the pressure drop is found to be
15 psf per 100 ft.of pipe, what is the kinematic viscosity v of the
fluid? Assume that the fluid’s specific gravity is 0.90.

10.22 Velocity measurements are made in a 30-cm pipe. The
velocity at the center is found to be 1.5 m/s, and the velocity
distribution is observed to be parabolic. If the pressure drop is
found to be 1.9 kPa per 100 m of pipe, what is the kinematic vis-
cosity v of the fluid? Assume that the fluid’s specific gravity is
0.80.

10.23 Water is pumped through a heat exchanger consisting of tubes
5 mm in diameter and 5 m long. The velocity in each tube is 12 cm/'s.
The water temperature increases from 20°C at the entrance to 30°C at
the exit. Calculate the pressure difference across the heat exchanger,

{1, FLUID
" S0LUTIONS
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neglecting entrance losses but accounting for the effect of temperature  Calculate (a) the pressure drop in psi, (b) the head loss in feet,
change by using properties at average temperatures. and (c) the power in horsepower needed to overcome the head
loss. (Note: PVC is a type of plastic. A 2.5-in. schedule 40 pipe
| has an inside diameter of 2.45 in.)
10.30 Water (10°C) flows with a speed of 2 m/'s through a hori-
zontal run of PVC pipe. The length of the pipe is 50 m and the
pipe is schedule 40 with a nominal diameter of 2.5 inches. Calcu-
late (a) the pressure drop in kilopascals, (b) the head loss in
meters, and (c) the power in watts needed to overcome the head
loss. (Note: PVC is a type of plastic. A 2.5-in. schedule 40 pipe
has an inside diameter of 62.2 mm.)

5m |

PROBLEM 10.23 ‘ 10.31 Water (70°F) flows through a 6-in. smooth pipe at the rate

of 2 cfs. What is the resistance coefficient f ?

10.32 Water (10°C) flows through a 25-cm smooth pipe at a rate

of 0.06 m>/s. What is the resistance coefficient f?

10.33 Air flows in a 3-cm smooth tube at a rate of 0.015 m3/s.;f, ;%“L%I—OE
If 7 = 20°C and p = 110 kPa absolute, what is the pressure drop

per meter of length of tube?

10.24 The velocity of oil (S = 0.8) through the 2-in. smooth
pipe is 5 ft/s. Here L = 30 ft, z; = 2 ft, z; = 4 ft, and the ma-
nometer deflection is 4 in. Determine the flow direction, the re-
sistance coefficient f, whether the flow is laminar or turbulent,
and the viscosity of the oil.

10.25 The velocity of oil (S = 0.8) through the 5-cm smooth pipe is
12 m/s. Here L = 12 m,z; = 1 m, g = 2 m, and the manometer
deflection is 10 cm. Determine the flow direction, the resistance co-
efficient f, whether the flow is laminar or turbulent, and the viscosity
of the oil.

10.26 Flow of a liquid in a smooth 3-cm pipe is thought to yield a
head loss of 2 m per meter of pipe when the mean velocity is 1 m/'s.

If the rate of flow was doubled, would the head loss also be doubled?
Explain.

10.34 Glycerine at 20°C flows at 0.6 m/s in the 2-cm commercial
steel pipe. Two piezometers are used as shown to measure the pie-
zometric head. The distance along the pipe between the standpipes
is 1 m. The inclination of the pipe is 20°. What is the height differ-
ence Ah between the glycerine in the two standpipes?

10.27 Ina 12-in. smooth pipe, fis 0.017 when oil having a spe-
cific gravity of 0.82 flows with a mean velocity of 6 ft/s. What
is the viscous shear stress on the wall?

ﬁg%’mﬁ 10.218 Considzer the flow of oil (p = 900 kg/m3; r W =

107 N-s/m") in a 10-cm smooth gipe and the flow of a gas

?= 1.0 kg/m3; =10°N-s/m ) in a 10-cm smooth pipe.
oth the oil and tfe gas flow with a mean velocity of 1 m/s.

Will the ratio of the maximum velocity in the oil to the maxi-

mum velocity in the gas (Vi ot/ Vimaxgas) D€ (a) greater than 1, PROBLEM 10.34

(b) equal to 1, or (c) less than 1?

10.29 Water (50°F) flows with a speed of 5 ft/s through a hor- 10.35 Air flows in a 1-in. smooth tube at a rate of 30 cfm. If

izontal run of PVC pipe. The length of the pipe is 100 ft, and T = 80°F and p = 15 psia, what is the pressure drop per foot of

the pipe is schedule 40 with a nominal diameter of 2.5 inches. length of tube?

PROBLEMS 10.24, 10.25
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due to friction in straight lengths of pipe. The second group of terms represents the head
loss associated with components such as valves, elbows, bends, and transition sections.
The Darcy-Weisbach friction factor is a function of the pipe Reynolds number,

Re = 22

For Reynolds numbers less than 2000, the pipe flow is laminar. An analytic solution
shows the velocity distribution is parabolic (Hagen-Poiseuille flow), and the Darcy-
Weisbach friction factor is

_64
f Re

For Reynolds numbers greater than 3000, the flow is turbulent and characterized by
a near uniform velocity profile with high velocity gradients near the pipe wall. The fric-
tion factor depends on the Reynolds number and the relative roughness:

)

where k, is the equivalent sand grain roughness. The values for friction factor can be ob-
tained from the Moody diagram or empirical equations. For a smooth pipe, the friction fac-
tor is independent of the relative roughness and depends only on the Reynolds number. For
the fully rough condition, the friction factor is independent of the Reynolds number and de-
pends only on the relative roughness.

The head loss coefficients may be obtained from tables and other sources of infor-
mation for various flow components.

Noncircular pipes can be analyzed using the hydraulic radius, which is defined as

where A is the cross-sectional area of the conduit and P is the wetted perimeter. To ana-
lyze noncircular ducts, the diameter in the equations for circular pipes is replaced by 4R;,

The analysis of pipe networks is based on the continuity equation being satisfied at
each junction and the head loss between any two junctions being independent of pipe
path between the two junctions. A series of equations based on these principles are
solved iteratively to obtain the flow rate in each pipe and the pressure at each junction in
the network.

In an open-channel flow, the head loss corresponds to the potential energy change
associated with the slope of the channel. The discharge in an open channel is given by
the Chezy equation:

0= %AR%BSé/Z

where A is the flow area, S, is the slope of the channel, and 7 is the resistance coeffi-
cient (Manning’s ), which has been tabulated for different surfaces.




