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Shear-Stress Distribution Across a Pipe Section

The velocity distribution in a pipe is directly linked to the shear-stress 'distribu-J

tion; hence it is important to understand the latter. To determine the shear-stress
distribution, we start with the equation of equilibrium applied to a cylindrical
control volume that is oriented coaxially with the pipe, as shown in Fig. 10.]

For the conditions shown in Fig. 10.1, it is assumed that the flow is uni oril
(streamlines are straight and parallel). Therefore, the net momentum flow
through the control volume is zero. Also, the pressure across any section of the
pipe will be hydrostatically distributed. Thus the pressure force acting on an end
face of the fluid element will be the product of the pressure at the center of the
element (also at the center of the pipe) and the area of the face of the element

With steady uniform flow, equilibrium between the pressure, gravity, and shear
ing forces acting on the fluid will prevail. Consequently, the momentum equa

tion yields the following:
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In Eq. (10.1) AW = yAAs and sina = dz/ds. Therefore, Eq. (10.1) reduces
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FIGURE 10.1

Flow in a pipe.




Then, when we divide Eq. (10.2) through by AsA and simplify, we obtain

r

T= i[— d%(p + 7z)] - 103)

Since the gradient itself, d/ds (p + z), is negative (see Sec. 7.4) and con-
stant across the section for uniform flow,* it follows that —d/ds(p + vz) will be
positive and constant across the pipe section. Thus 7in Eq. (10.3) will be zero at
the center of the pipe and will increase linearly to a maximum at the pipe wall.
We will use Eq. (10.3) in the following section to derive the velocity distribution
- for laminar flow.
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We determine how the velocity varies across the pipe by substituting for 7in Eq.
(10.3) its equivalent u dV/dy and integrating. First, making the substitution,
we have

dv _ r[ d

il G ?z)] (104)

Because dV/dy = —dV/dr, Eq. (10.4) becomes
av_ _r[_d
-2 ”[ Pt 7z)] (10.5)

When we separate variables and integrate across the section, we obtain
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We can evaluate the constant of integration in Eq. (10.6) by noting that when
r= r[,,zthe velocity V = 0. Therefore, the constant of integration is given by
C = (ry/4p)[—d/ds(p + y2)), and Eq. (10.6) then becomes
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Equation (10.7) indicates that the velocity distribution for laminar flow in a pipe
is parabolic across the section with the maximum velocity at the center of the
pipe. Figure 10.2 shows the variation of the shear stress and velocity in the pipe.

* The combination p + %z is constant across the section because the streamlines are straight
and parallel in uniform flow, and for this condition there will be no acceleration of the fluid .
normal to the streamline. Thus hydrostatic conditions prevail across the flow section. For a

hydrostatic condition, p/y + z = constant or p + ¥z = constant as shown in Chapter 3.



FIGURE 10.2

Distribution of shear
stress and velocity for
laminar flow in a pipe.
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Laminar flow in a round pipe is known as Hagen-Poiseuille flow n
after a German, Hagen, and a Frenchman, Poiseuille, who studied low-spes
flows in tubes in the 1840s.

Oil (S=0.90; u=5X% 100°'N- s/mz) flows steadily in a 3-cm pipe. The
pipe is vertical, and the pressure at an elevation of 100 m is 200 kPa. If the
pressure at an elevation of 85 m is 250 kPa, is the flow direction up or down!
What is the velocity at the center of the pipe and at 6 mm from the center, a-
suming that the flow is laminar?

Solution First determine the rate of change of p + yz. Taking s in the z dire-
tion,

i( A ) S (le it YZI(X)) - (Pss o ‘}’285)
ds Lane 15

_ [200 x 10” + 8830(100)] — [250 X 10” + 8830(85)]
15

_ (1.083 X 10° ~ 1.00 X 10°) N/m’
15 m

=5.53 kN/m’

The quantity p + yz is not constant with elevation—it increases upward (de
creases downward). Therefore, the direction of flow is downward. This can
seen by substituting d(p + yz)/ds = 5.53 kN/ m® into Eq. (10.7). Whe
this is done, V is negative for all values of r in the flow. When » = 0 (centere
the pipe), the velocity will be maximum. Thus



Vieier = Vinax = 2 (—5.53 KN/m”)
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4(5% 107" N s/m

—(-553 %X 10°N/m") = =062 m/s <

)

At first it may seem strange that the velocity is in a direction opposite to the di-
rection of decreasing pressure. However, it may not seem so peculiar if one re-
alizes that in this example the pipe is vertical, so the gravitational force as well
as pressure helps to establish the flow. What counts when flow is other than in
the horizontal direction is how the combination p +vyz changes with s. If
p + yz is constant, then we have the equation of hydrostatics and no flow oc-
curs. However, if p + yz is not constant, flow will occur in the direction of de-
creasing p + yz.

Next determine the velocity at r = 6 mm = 0.006 m. Using Eq. (10.7),
we find that

_ 0015 m* — 0.006° m’
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L4 ~1
4(5% 107" N-s/m)

(—5.53 X 10° N/m’) = —0.522 m/s <

For many problems we wish to relate the pressure change to the rate of
flow or mean velocity V in the conduit. Therefore, it is necessary to integrate
dQ = VdA over the cross-sectional area of flow. That is,
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The factor w[d(p + yz)/ds]/4p is constant across the pipe section. Therefore,
upon integration, we obtain
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0= ﬁ[ﬁ(!’ + 72)]—‘2 . (10.9)

which reduces to
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Q= a[ ds(p - ’)’Z):l (10.10)
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pipe where V| = V,, the result is

If we divide through by the cross-sectional area of the pipe, we have an expres-
sion for the mean velocity:

v=D[_4d
V= 32“[ S+ 1) (10.)
d _ 32uV .
or Pt 7 o (10.13)

Integrating Eq. (10.13) along the pipe between sections 1 and 2, we obtain
32 ,u.V

Pt T) = (52 = 51) (10.14)

Here s,—s, is the length L of pipe between the two sections. Therefor,
Eq. (10.14) can be rewritten as

yD

It can be seen that when the general energy equation for incompressible flowin
conduits, Eq. (7.24), is reduced to one for uniform flow in a constant-diameter

P P2
— 4tz =—4z,+h
Y % Y & I

Here h; is used instead of /; to signify head loss due to frictional resistance o
the plpe Comparison of Egs. (10.15) and (10.16) then shows that the head los
is given by

32;LL2V (1011
yD
Here the bar over the V has been omitted to conform to the standard practice of d
noting the mean velocity in one-dimensional flow analyses by V without the bar

hy=



