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Spectral matching and linear mixture modeling tech- geological mapping because it allowed identification and
niques have been applied to synthetic imagery and mapping of the relatively pure regions of all the surficial
AVIRIS SWIR imagery of a semiarid rangeland in order materials that exert an influence on the spectral response.
to determine their effectiveness as mapping tools, the The maps of the different clay minerals were of consider-
synergism between the two methods, and their advan- able value for mineral exploration purposes. Conversely,
tages, and limitations for rangeland resource exploitation spectral matching was less useful than mixture modeling
and management. Spectral matching of pure library spec- for rangeland vegetation studies because a classification of
tra was found to be an effective method of locating and all pixels is needed and abundance estimates are required
identifying endmembers for mixture modeling although for many applications. Mixture modeling allowed identifi-
some problems were found with the false identification cation of both nonphotosynthetic and green vegetation
of gypsum. Mixture modeling could accurately estimate cover and thus total cover. Though the green vegetation
proportions for a large number of materials in synthetic mixture map appears to be very precise, the nonphoto-
imagery; however, it produced high variance estimates synthetic vegetation estimates were poor. Elsevier Sci-
and high error estimates when presented with all nine ence Inc., 1999
AVIRIS endmembers because of high noise levels in the
imagery. The problem of which endmembers to select was
addressed by implementing a mixture model that allowed INTRODUCTION
estimation of the errors on the proportions estimates, dis-

This study investigates the capabilities, and limitations ofcarding the endmembers with the highest errors, recom-
using imaging spectroscopy data in the short wavelengthputing the errors, and the proportions estimates, and it-
infrared (SWIR 2–2.5 lm) to map the vegetation, geol-erating this process until the mixture maps were
ogy, and soils of a semiarid rangeland. This wavelengthrelatively free from noise. This methodology ensured that
range has been shown to be a promising one for mineralthe lowest contrast materials were discarded. The inevi-
identification and mapping (Mackin et al., 1990; Hook ettable confusion that followed was monitored the using
al., 1991), but also has the potential to identify, and mapthe maps produced by spectral matching. Spectral
some of the different constituents of the vegetation can-matching was more effective than mixture modeling for
opy (i.e., green leaves and woody material) because
green plant materials exhibit a spectrum dominated by
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order to identify materials and derive a classification map proportions of both green and nonphotosynthetic vegeta-
tion (NPV) using mixture modeling. This raises the possi-of their spatial distribution. Spectral matching was also used

to determine the purest pixels of each identified material. bility of estimating the different types of cover needed
for the different applications outlined above. The greenThis is precisely the prior information needed when apply-

ing a linear mixture model, the second approach we investi- vegetation mixture map could provide information useful
for input into models of evapotranspiration and for farmgated. Thus a combined mixture modeling/spectral match-

ing approach is a promising method for estimating the frac- management purposes. Total vegetation cover [which can
be obtained by adding the green, and NPV maps to-tional cover of Earth surface materials (Mackin et al., 1990;

Kruse et al., 1993a; Ben-Dor and Kruse, 1995). gether (Drake, 1991)] provides information on land deg-
radation and inputs into models of overland flow and
erosion (Drake et al., 1995). To determine the utility ofBACKGROUND AND OBJECTIVES spectral matching and mixture modeling for rangeland
vegetation cover estimation, we evaluated their precisionThe information provided by spectral matching and lin-

ear mixture modeling of rangelands have applications in over different rock and soil backgrounds and compared
the results to that of two field techniques.studies of geology, soils, and rangeland vegetation exploi-

tation, degradation, and management as outlined below.
Rocks and Soils

Vegetation Remote mineralogical identification and mapping has
been an important goal of geological remote sensing forVegetation cover is important for land degradation stud-
many years. Spectral matching and linear mixture model-ies because it exerts a control on evapotranspiration, in-
ing of imaging spectroscopy data have been shown to befiltration, runoff, soil erosion, and, over the long term,
effective methods of mapping the mineralogy of sparselythe organic matter content of soils. It is also important
vegetated terrains (Clark et al., 1990; Kruse et al., 1993a;for grazing management because the amount of green
Ben-Dor and Kruse, 1995). Our study site provides a testvegetation determines cattle turnout dates and can be
of the utility of these methods in a semiarid region thatused to adjust grazing pressure and determine the amount
contains a diverse geology including a sediment hostedof forage available for winter grazing (Frank and Aase,
gold deposit, and numerous areas of hydrothermally al-1994).
tered rocks that are partially covered in vegetation. How-The most commonly used remote sensing techniques
ever, the site is not as ideal for investigating the utilityfor estimating green vegetation cover are vegetation indi-
of these techniques for soil mapping because only oneces that employ red and infrared wavelengths, such as the
soil type is developed. We evaluated the effectiveness ofnormalized difference vegetation index (NDVI). Though
these methods for mapping rocks and soil by determin-some studies of semiarid shrublands have successfully
ing the mineralogy of field samples and comparing themused these vegetation indices (Kennedy, 1989), many
to image estimates of abundance and distribution.studies have shown that they are of limited value (Pickup

et al., 1994; Graetz et al., 1986) because of the darkening
Advantages and Limitations of Mixture Modelingevident in semiarid vegetation canopies (Ringrose et al.,
of SWIR Data1994), soil albedo effects (Elvidge and Chen, 1995;

Huete et al., 1985), and the fact that some soils exhibit Arguably the most important problem with linear mix-
ture modeling is nonlinear mixing (Roberts et al., 1993).a marked difference in reflectance between the red and

NIR due to soil or rock mineralogy (Elvidge and Lyon, Linear mixing assumes that each photon has only inter-
acted with one material in the image. This occurs when1985). In order to provide a better estimate of vegetation

cover in rangelands, a number of new indices have been the materials are distributed as discrete units smaller
than the resolution of the sensor that are physically ordeveloped that do not rely on red and infrared reflec-

tance (Ringrose et al., 1994; Graetz et al., 1986; Pickup optically thick so that they transmit no light. Significant
amounts of transmission leads to multiple scattering andet al., 1994). However, the relationship between vegeta-

tion cover and these indices appears to vary between dif- nonlinear mixing.
Nonlinear mixing can be expected in vegetation can-ferent areas along an arid humid transition in Northern

Australia, and no single index seems to be universally ap- opies because for green vegetation transmission is high at
certain wavelengths (Fig. 1a). By employing wavelengthsplicable to all semiarid vegetation (Ringrose et al., 1994).

Numerous studies have shown that mixture model- where transmission is low, the assumption of linear mix-
ing, though a simplistic one for vegetation canopies, is ating can be used to estimate vegetation cover (Mackin et

al., 1990; Smith et al., 1990; Drake, 1991; Roberts et al., its most valid. For SWIR wavelengths transmission of
light by green leaves is variable but generally low be-1993), and Garcia-Haro et al. (1996) have shown that

mixture modeling is less sensitive than NDVI to soil cause of absorption of light by water (Fig. 1a). After the
visible it provides the wavelength range most appropriatebackground effects. Furthermore, Drake (1991) and Ad-

ams et al. (1995) have shown that is possible to map the for linear mixture modeling of green vegetation.
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1c). Thus on the whole SWIR wavelengths seem promis-
ing for mixture modeling of vegetation canopies.

When finding endmembers by matching image to li-
brary spectra in order to apply a mixture model, the
model can be trained by using either library or image
endmembers. Library endmembers have the advantage
that they are known to be pure and thus proportions es-
timates are absolute whereas image endmembers may be
impure and the proportions estimates relative. However,
as image endmembers contain the noise of the imaging
system, it may be possible to estimate the error associ-
ated with this noise from them (Settle and Drake, 1993).
We assessed the utility of both approaches of training the
model by determining the purity of identified endmem-
bers. We calculated the errors and assessed their ability
to provide a method for evaluating the utility of the mix-
ture maps for the above mentioned applications. We also
assess their use in guiding endmember selection.

AVIRIS STUDY SITE

Climate and Vegetation
The study site is located in central Nevada, USA. The
topography of the region is typical of the great basin.
The altitude varies between 1524 m in the valley floors,
and 2794 m at the top of the Sanoma Range. The area
is semiarid, receiving about 200 mm of precipitation per
year. Some of this precipitation falls as snow during the
winter months, particularly at higher altitudes where it
may last much of the winter providing water in the sum-
mer for the ephemeral streams that drain these moun-
tains.

The vegetation of the region is highly variable. The
most extensive plant community is sagebrush semi-desert
which is dominated by woody sagebrushes such as Arte-
misia tridentata but contains other shrubs in lesser
amounts such as snakeweed (Chrysothamnus viscidi-
florus). Associated plant species are grasses and sub-
shrubs (West, 1981). The deciduous shrub community is
restricted to the well-watered areas such as the headwa-
ters of the major river valleys that drain the Sanoma
Range. Unlike sagebrush semidesert, in summer months
this community provides a dense canopy of green leaves.
Finally, the graminaceous community is present in low
amounts throughout the study area, and is dominant in
seasonally well-watered areas where the other communi-Figure 1. Reflection, absorption and transmission of

light for a green and senesced soy bean leaf (after ties are absent because of human disturbance such as
Jacquemoud, 1989): A) green leaf, B) yellow senescent fires or clearance. During the summer months these
leaf, and C) brown senescent leaf. grasses quickly die off and present a canopy of dense se-

nescent leaves.

Transmission through woody material is unlikely due
Economic Geology and Geomorphologyto its opaque nature, however, the transmission proper-
The study area exhibits a complex geology, and there isties of leaves seem to vary at different stages of senes-
considerable debate as to whether the different rock for-cence. Transmission by yellow senescent leaves is about
mations of the region (Fig. 2) represent a continuous se-30% throughout the SWIR (Fig. 1b) and thus may pose

a problem, but is only about 15% for brown leaves (Fig. quence of sedimentation, or are related to distinct oro-
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Figure 2. Geology of the study area. The region outlined by the dashed line defines the area
shown in shown in Figure 4.

genic events (Madden-McGuire and Marsh, 1991). The aeolian dust fallout derived from the surrounding playas
(Chadwick and Davies, 1989).geology has been studied in detail because of the numer-

ous sediment-hosted disseminated gold deposits found
along the Getchell trend. In the study area this trend EXPERIMENTAL IMAGERY
expresses itself as a fault separating the Valmay and Pre-

Two images were used in this study. The AVIRIS imageble Formations. The Preble Formation consists primarily
was acquired in September 1990. Only the 35 AVIRISof siltstone, micaceous phyllite, and quartsite with lesser
SWIR bands from 2023.5 nm to 2374.1 nm were usedchert, calcarious shale, sericite-ankerite schist, and lime-
in this analysis as the rest of the SWIR data containedstone. The Valmay Formation consists primarily of chert,
too much noise. The synthetic image was created usingquartzite, and slate with localized areas of limestone
spectra of 12 different materials(talc, epidote, pyrophyl-which is sometimes silicified. A number of small intru-
lite, alunite, muscovite, illite, calcite, kaolinite, gypsum,sive bodies and quartz vein systems are associated with
dolomite, montmorillonite, and NPV). Each material hadthe Getchell Fault and some of its subsidiary splays, a
a region of the image in which it was dominant but wasfew of which exhibit pyritic and argillic alteration. Gold
linearly mixed with three other materials in up to four

mineralization is associated with this faulting and alter- component mixtures. This was accomplished by dividing
ation, and one of these splays contains economic gold the image into 12 areas within which a single component
and silver mineralization that was being mined at the was dominant. In each area the dominant component
time of the AVIRIS over flight. Though the clay mineral was assigned a value of 50% and up to four of the 12
illite is often directly associated with the gold in the sedi- materials were then randomly selected and assigned ran-
ment-hosted gold deposits of the region (Kruse and dom proportions to make up the other 50% in each
Hauff, 1991), most of the gold and silver in this mine is pixel. A small noise element due to nearest-integer-
associated with the quartz vein systems; lower concentra- rounding errors is present in the data.
tions are found in quartz stockworks and the alteration
zones that surround them (Dawson, 1988). METHODS OF ANALYSIS

The outcrops of the above-mentioned rocks are
Data Preprocessingmainly found on ridges, the valley sides and floor being

covered by soil, colluvium, and alluvium. The soil is simi- The AVIRIS imagery presented many problems not ex-
pressed in the synthetic data set, the primary problemlar over all rock types, and is thought to originate from
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being the many forms of random and systematic noise, likelihood estimate of f. The second constraint is straight-
forward to implement (e.g., Settle and Drake, 1993), butwhich included horizontal striping effects, zero pixel val-
the first is more problematic. Shimabukuro and Smithues, and a generally low signal-to-noise ratio (20:1 for a
(1991) present algorithms for the cases c53 and 4, but50% albedo target). In order to reduce this noise, a sim-
these are not easily generalized, and, when more classesple smoothing was performed using principal compo-
are present, we need to apply a quadratic programmingnents analysis. This involved visually examining the prin-
approach (Settle and Drake, 1993) or adopt some subop-cipal component images, determining how many of them
timal estimation method.contain genuine information, and then inverting the trans-

The prediction error on the estimated proportionsform using just those components. There is a somewhat
vector is a random variable which has a mean of zerosubjective element in this as some principal components
and a variance covariance matrix E (Settle and Drake,are dominated by noise but seem to contain a minor
1993). This is independent of f provided that e is itselfamount of spectral information. There were 35 bands in
independent of f. The square root of Eii, the ith diagonalthe original image, and the noise removal was based on
element of E, gives a measure of the prediction error onthe first eight of the principal components.
the ith component of f. As a simple illustrative example,To calibrate the image, we processed it using the
consider the case of a two-component mixture, the end-logarithmic residuals method (Green and Craig, 1985) to
members of which are l1 and l2 , and for which randomproduce pseudoreflectance spectra that approximated
noise is uncorrelated and of equal variance in all chan-true reflectance. The method provided a simple ap-
nels (i.e., N5r2I, where r2 is the variance and I is theproach to obtain approximate reflectance curves, works
n3n identity matrix). Then we find Eq. (5):well on scenes such as this where there is much spectral

variation from pixel to pixel, but can produce unusual ar- E115E225r2/‖l22l1‖2, (5)
tefacts in the data. Another feature of logarithmic residu-

where ‖y‖ denotes the length of an arbitrary vector y.als is that it removes the brightness variations in the im-
Thus the prediction error in this two-component modelage caused by differences in grain size of rocks and soils,
is simply the noise level, divided by the spectral separa-and factors such as shading due to surface roughness and
tion of the endmembers. The more general case is noth-the topography. ing so simple, but it remains true that the prediction
error depends on the spectral separability of the end-

Linear Mixture Modeling members, measured relative to the noise variance. Thus
We use n to denote the numbers of spectral bands in E provides a useful tool for assessing the likely effective-
the image, and c the number of cover types present. For ness of any mixture analysis. For example, a value of E
any pixel, let xi denote the observed signal in the ith of 0.5 means that for 33% of the pixels the actual abun-
multispectral channel, and let fj denote the proportion of dance will be $650% of the predicted pixel value; thus
that pixel covered by the jth cover type. We write x 5 the pixel could have a value of 0% or 100% and in effect
{x1, x2, . . ., xn}T and f 5 {f1, f2, . . ., fc}T (where the super- is undetectable by mixture modeling as it fills the entire
script T denotes “transpose”). The linear mixture model range of percentages. Even an E of 0.25 will mean that
is defined by Eq. (1) (Horwitz et al., 1971): the mixture map will be dominated by noise and will be

of little practical value.x5Mf1e, (1)
Though the E has been shown to be effective in

where M is an (n3c) matrix whose columns are end- evaluating errors using synthetic imagery (Settle and
member spectra. The quantity e is a noise term, which Drake, 1993), there have been few tests of the method
we take to have zero mean and variance–covariance ma- on real data. Problems can be expected with the AVIRIS
trix given by N, say. Assuming M and N are known, we imagery as to calculate E there have to be enough end-
can estimate f by a modified least squares approach, se- member pixels to characterize the image noise, and pure
lecting that f that minimizes the quadratic function in pixels are rare in semiarid rangelands. Furthermore, the
Eq. (2): AVIRIS imagery contains both random and systematic

noise and there is also likely to be some variation caused(x2Mf)TN21(x 2 Mf), (2)
by minor changes in the spectral quality of endmembers

subject to the constraints from pixel to pixel. To derive absolute values of the pre-
diction error, we need to know the image noise, and it0<fi<1, i51, . . ., c (3)
has to be random. However, when this is not the case,

and as is likely with the AVIRIS imagery, we can assume a
constant variance when calculating E and inspection off11f2 · · · f51. (4)
the matrix will still provide clues to the relative reliability

Equation (3) states that the elements of f are nonzero of the proportions estimates, and also (via off-diagonal
and Eq. (4) that they add up to 1. If the errors are terms) to evidence of confusion between pairs of end-

members.Gaussian, then this minimization gives the maximum
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Spectral Matching sampling the mineralogical diversity of the region. In or-
der to relate the XRD results to the results of the spec-Spectral matching techniques are widely used in chemis-
tral matching and linear mixture, modeling sites with ho-try and other disciplines but have only recently been
mogeneous geology or soil exposure and low or absentused as an analytical technique for imaging spectroscopy
vegetation cover were selected.(Clark et al., 1990; Mackin et al., 1990). Each library

Vegetation cover was measured using two methodsspectrum is compared against the unknown image spec-
and two observers in order to quantify the errors associ-trum across the SWIR wavelength range after converting
ated with these field estimates as well as those associatedthe library spectra to the same bandwidths as the image.
with the mixture modeling. The first approach used theIn order to match curve shape but not differences
line intercept method using three random 30 m transectsin reflectance, the library and the AVIRIS image spectra
taken from a stake. Only senescent and green vegetationwere normalized. Normalization helps compensate for
proportions could be easily distinguished using thistopographic and grain size effects and the fact that many
method as it proved hard to define the size of the smallerof the library spectra are hemispherical, whereas the im-
plant parts such as sagebrush flowers and grass stems.age spectra are bidirectional. Our normalization converts

In order to record the abundance of these smallerreflectance spectra to variations about the mean of each
canopy components, a vertical photograph approach wasspectrum, using Eq. (6):
adopted. This involved taking a vertical photograph every
5 m along each of the three transects. Slides were thenDi5

xi2x

o
i

n51
*xi2x*

(6)
projected onto a gridded screen that contained 100 cross
points with the canopy component at each cross point
noted and converted to a percentage. The componentswhere Di is the normalized value for band i, xi the reflec-
we considered were green leaves, grey bark, brown bark,tance value for band i, xi the mean value of the spec-
flowers, senescent leaves, senescent grass, soil, and littertrum, and n the number of bands.
(grey wood, grey grass, cow dung). Samples of the differ-Image spectra were then matched to library spectra.
ent plant parts were collected and their spectra acquiredThere are a number of ways of doing this. We have used
using a Geophysical Environmental Research Corpora-the following distance function [Eq. (7)]:
tion single field of view spectroradiometer (GER SIRIS)
and a Beckman 5240 Spectroradiometer equipped withCj512o

n

i51
*Dij2Di* (7)

an integrating sphere.

where Dij is the normalized data value of band i for li-
brary spectrum j and Di the normalized data value of RESULTS
band i for the unknown image spectrum. Cj varies be-

Spectral Matchingtween 1 and 21 for each of the j library spectra. Values
of 1 represent a perfect fit, and values below zero are Spectral Matching the Synthetic Image
rejected as the fit is poor. The identity of the material Spectra from the Jet Propulsion Laboratory (JPL) and
with the highest Cj greater than zero is assigned to each the International Geological Correlation Programme

(IGCP) spectral libraries was used for analysis of the im-image spectrum. The pixel that has the highest Cj will be
agery. The synthetic image was matched to a sublibrarythe purest example of that material in the image. Thus as
containing 20 materials, 12 of which existed in the image.well as producing a classification map this method has
The pixels with the highest match scores were the purestpotential for determining the number, identity, and loca-
pixels of each of the 12 materials in this image. No othertion of the image endmembers.
spectra in the library exceeded the match score thresholdIf the spectra are normalized such that oD2

i 51 and
of zero. Misclassification was evident in the maps of thea euclidean distance used for comparison, the matching
matched pixels whereby a few were assigned to materialsamounts to maximizing the standard cross-correlation of
that did not exhibit the highest proportion in that pixel.the normalized spectra, or equivalently to the so-called
These errors occur when high contrast spectra are mixedSpectral Angle Mapper (Kruse et al., 1993b). The Di
with spectra of lower contrast. In this situation the highmetric was preferred in this study because it is more
contrast spectrum dominates the mixed spectrum, androbust.
thus the matching assigns the pixel to the high contrast
material.Field Validation of AVIRIS Imagery

In order to check that the minerals identified in the im- Spectral Matching the AVIRIS Image
agery were actually present on the ground, 20 samples A sublibrary containing 23 minerals and two vegetation
were collected, and their mineralogy determined by x-ray spectra was used to analyze the AVIRIS image (Table 1).
diffraction (XRD). Sample sites were selected with refer- Twelve minerals provided match scores below the thres-

hold of zero, and were deemed to be absent; nine mate-ence to geological maps and field work with the aim of
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Table 1. Library Spectra Matched to the AVIRIS Imagery ent plant parts in the canopy for sagebrush and snake-
weed (Fig. 3). Though the spectra of snakeweed greenIndentified as Identified as
leaves and live flowers differ markedly in reflectance inContagious Units Scattered Pixel Not Identified
the visible, they are remarkably similar in terms of bothMuscovite Jarosite Magnesite
reflectance and curve shape in the SWIR (Fig. 3a). Sage-Illite Epidote Actinolite

Calcite Clinozoisite Tremolite brush flowers and leaves also exhibit differences in re-
Dolomite Hematite Alunite flectance in the visible; however, the flowers have a
Kaolinite Chlorite Brucite much lower reflectance in the near-infrared but are simi-
Gypsum Goethite Pyrophyllite

lar in the SWIR. Thus in the SWIR the flowers andMontmorillonite Talc
leaves exhibit a similar spectral curve shape for both spe-Green vegetation Dickite

NPV Saponite cies. The logarithmic residual transformation of the
AVIRIS data, and the normalization associated with the
matching procedure mean that we are only using curve
shape in our analysis, and thus flowers can be expectedrials provided high match scores that formed spatially
to be confused with green leaves. However, as snake-contiguous units, and are likely to be present; and six
weed is uncommon and the cover of flowers in denseminerals provided match scores that exceeded the
sagebrush canopies is only 0.03%, the problem is mini-threshold but were rare and exhibited no spatial pattern.
mal at this time of year.Investigation of the image spectra for the latter pixels

Dry grass, grey wood, and brown wood exhibit ashowed that the match score exceeded the threshold be-
markedly different spectral response in the visible, andcause noise in the image spectra can sometimes cause
NIR because of lignin weathering (Fig. 3b) (Elvidge,sudden peaks or dips in reflectance that mimic reflec-
1990). However, the spectral curve shape of dry grasstance peaks and absorption features in the library spec-
and these nonphotosynthetic plant materials is similar intra. Materials that showed this random spatial pattern
the 2000–2400 nm region, where they all show absorp-were therefore ignored.
tion features due to lignin and cellulose (Elvidge, 1990).Vegetation: The map of pixels that exceed the match
It appears that a number of different endmember spec-score threshold for green vegetation predominantly out-
tra are needed to explain the spectral variation of NPVlined dense stands (90–100% cover) of the annual shrub
in the visible and NIR; however, most of these materialscommunity while those of NPV predominantly mapped
do not exhibit high proportions (Table 2) and thus mayareas of dense senescent grass cover (90–100%). These
not form image endmembers. In the SWIR all thesemaps of vegetation provide little information on the sage-
nonphotosynthetic plant materials exhibit similar spectralbrush shrub community as the vast majority of pixels are
features, and, as a first-order approximation, they can bemixed. This mixing occurs at two scales. First, the patchy
explained by a single endmember. In this image thisdistribution of shrubs provides areas of exposed ground
endmember is dry grass because it is the only nonphoto-between individual plants. Second, the shrub canopies
synthetic plant material that exhibits 100% cover.themselves are sparse and heterogeneous, containing

Rocks: Spectral matching suggests that muscovite,numerous different plant parts in different proportions
kaolinite, illite, and gypsum are primarily found in a(Table 2).

We investigated the spectral variation of these differ- small area of the Preble formation in the vicinity of the

Table 2. Variability the Proportions (%) of the Materials Visible within 1 m2

Meter Areas of Sagebrush in Different Stages of Development

Dense Sparse Dead Average of
Canopy Canopy Canopy Region

Canopy
Green leaves 34 18.6 0.5 10.6
Senescent leaves 11.5 6.3 0 2.2
Brown bark 3.5 3.6 0 1.4
Grey bark 32 44 62.5 23.1
Live flowers 1.5 1.3 0 0.03

Under canopy
Senescent grass 10.5 20.6 25.5 26.2
Soil 4.5 3.6 9 19.69

Litter
Grey wood 0 1 0 5.3
Grey grass 0 1.6 0 10.1
Cow dung 0 0 0 1.1
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gold mine. This area was intensively sampled in the field is hard to quantitatively relate the XRD results to the
match scores. However, those regions that have highand XRD analysis confirmed the presence of extensive

muscovite, and minor amounts of kaolinite (Table 3). We match scores for a mineral do seem to exhibit high
proportions, but the samples are far from pure (Tablecould not distinguish illite from muscovite in these sam-

ples using XRD because of the presence of numerous 3). Quartz is the predominant mineral (usually .50%)
with subordinate amounts of muscovite/illite and kaolin-other minerals. In addition, our sampling provided no

specimens that contained montmorillonite. However, ite. These quartz rich specimens still retain the spectral
features of the less common clays because quartz isthere is independent evidence for the presence of illite,

and montmorillonite in the vicinity of the mine (Daw- transparent, and spectrally featureless in the SWIR. In
consequence, the clay endmembers defined by spectralson, 1988).

The geology of the region (Madden-McGuire and matching cannot be considered “pure,” even though they
match well to pure laboratory spectra. Thus there is noMarsh, 1991; Dawson, 1988), fieldwork, and XRD results

do not support the presence of gypsum. This misclassifi- advantage in using library spectra as endmembers as the
proportions estimates derived from the mixture modelingcation can be attributed to the fact in the SWIR the

spectrum of gypsum is similar to a mixture spectrum of using these endmembers will still be relative not absolute
and E cannot be calculated. The only way to determinekaolinite and muscovite.

Muscovite/illite and kaolinite exhibit a considerable the actual mineral concentrations in these endmember
pixels is to conduct intensive sampling and mineralogicalvariation in the proportions for different samples col-

lected within a single pixel (Table 3, D16a,b,c); thus it analysis; however, for mineral exploration purposes, ac-

Figure 3. Spectra of the different plant
parts found in the sagebrush and snake-
weed canopy: a) live plant parts; b)
woody plant parts.
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Table 3. XRD Analysis of Selected Rock and Soil Samplesa

Sample Orthoclase
Site Muscovite and
and and/or Plagioclase
Type Illite (%) Kaolinite (%) Quartz (%) Feldspars (%) Amphibole (%) Other (%)

Soils
D1 14.4 2.5 47.7 19.7 2.2 Zeolite 14.1
D8 17.9 5 45.1 23.4 0.4 Zeolite 8.2
D11 19.9 16.5 33.8 28.3 1.4
D12 16 5.3 52.1 25.2 1.4
D13 18 3.6 59.7 11.5 0.4
D14 17.9 7.6 57.2 13.5 0.4 Zeolite 3.4
AM2 6.2 39.8 9.5 Calcite 41.2

Rocks
D1 42 51.2 1 Haematite and/or

Goethite 3.4
Lepidocrocite 1.4

D8 6.3 16.3 76.5 Lepidocrocite 0.9
D11 6.8 15.5 74.2 0.8
D12 16.8 Ankerite 83.2
D13 31.5 68.5
D14 47.3 24.9 27.8
D16a 32.1 67.9
D16b 100
D16c 26.6 5.2 68.2
D18 12.4 Calcite 87.6
J1 7.8 Calcite 92.2

a We could not distinguish illite from muscovite in these samples using XRD because of the presence of numerous other minerals.

curate estimates of proportions are not necessary as it is Soils: Few areas of soil were mapped by spectral
matching primarily because they are only well developedthe spatial association of minerals that provides the best

indicator of potential gold mineralization. on the valley bottoms, and in these regions they are cov-
ered in vegetation. Many of the minerals found in theThe distribution of calcite and dolomite was con-

fined to extensive areas in the west that contain lime- soils are the same as those found in the surrounding
rocks, and thus appear to be largely locally derived (Ta-stone outcrops but could not be verified due to access

restrictions and to a series of carbonate hills in the north- ble 3). The exceptions are the feldspars, amphiboles, and
zeolites, which are found only in the soils. The formereast part of the image. These carbonate hills were closely
two minerals probably represent transported material,studied on the ground, and XRD showed the limestone
and the latter a weathering product. The commonest ofto be predominantly calcite as suggested by spectral
these components is the feldspars. Like quartz, feldsparmatching (Table 3). For calcite the highest match scores
minerals have no diagnostic spectral features in thecorresponded to rock outcrops that contained about 90%
SWIR (Grove et al., 1992). The soil spectra appear tocalcite and 10% quartz (Table 3, samples D18 and J1);
show variations in the size, and shape of the absorptionthus, in the case of calcite, almost pure pixels are being
feature at 2.2 lm due to variations in the amount of il-identified as such by the matching procedure.
lite, muscovite, and kaolinite (Fig. 5), while the otherDespite the identification error of gypsum and the
mineralogical variations are not evident in the spectra.fact that high match scores do not correspond to pure
Thus areas of high soil exposure are mapped by the spec-deposits for some minerals, the map of mineral zonation
tral matching according to their clay content.provided by the spectral matching is extremely useful for

targeting new areas of alteration associated with quartz
Mixture Modelingveins that may contain mineralization (Fig. 4). The ability

of the methodology to map the different minerals pro- The image endmembers defined by the matching proce-
duced by hydrothermal alteration provides a very useful dure were used in preference to library endmembers to
mineral exploration tool, though subsequent exploration mixture model both the synthetic and AVIRIS images for
drilling in this region did not ultimately reveal further three reasons. First, we have shown that clay endmem-
economic gold mineralization. Furthermore, the ability bers are not pure, even though they match well to pure
to distinguish illite from muscovite provides a powerful library spectra. Second, image endmembers contain noise,
tool for locating other sediment hosted gold deposits be- and thus allow calculation of the errors associated with

the proportions estimates (E), as long as there arecause of the common association of gold with illite.
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Figure 4. The results of spectral
matching for a region of hydro-
thermal alteration in the vicinity
of the Getchell fault. The loca-
tion of this image is outlined in
Figure 2. Black areas represent
mixed pixels that are unclassified
as they fall below the threshold.
Areas of illite/muscovite zoning
offer the highest potential for the
presence gold mineralization.

enough pixels to characterize this noise. Third, because nine endmembers defined by the spectral matching were
applied to the image, all the mixture maps were heavilyof the sensitivity of mixture modeling to noise, high noise

levels affects the ability of mixture modeling to utilize influenced by noise, and some endmembers had to be
discarded by dropping those with the highest E (Tablelow contrast endmembers because they are swamped by

it (Sabol et al., 1992). E can be used to quantify this de- 4). Unfortunately, due to the lack of pure pixels identi-
fied by the matching procedure, it was not possible totectability as it quantifies the effects of noise outlined by

Sabol et al. (1992). Recall that a value of E of 0.50 trans- characterize the image noise, and produce precise values
for E. To alleviate this problem, a constant value (1DN)lates to a fractional error $650% for 33% of the image

pixels and thus a pixel could actually have a value of 0% was assumed for the noise; thus E only provided a mea-
sure of the contrast between the endmember spectra.or 100% and in effect is undetectable.

By successively dropping the endmember with the
Mixture Modeling the Synthetic Image highest E, recomputing E, and inspecting the mixtureThe synthetic image provides a baseline because all end- maps for the influence of noise, it proved possible to en-members are represented by numerous pure pixels and sure that the lowest contrast endmembers were dis-the only noise present is due to rounding from real to carded. However, by ignoring materials that are knownbyte. The errors are therefore due to quantization and to exist, confusion is inevitable. By coupling this proce-differences in contrast, and show what can be achieved dure with the maps of the distribution of materials pro-in the absence of system noise. E is small in general; vided by the spectral matching, this confusion can behowever, there are notable errors on the proportions es- monitored and is outlined in Table 4. Generally, if twotimates for some materials (Table 4). The largest E is minerals had similar absorption features, then both ex-that of NPV where we can expect 33% of the propor- hibited a high E, the one with the highest was dropped,tions estimates to be $65.4% of the predicted pixel and confusion occurred between them. The exception isvalue even in this favorable situation. kaolinite, which has a spectrum that differs markedly

from the other clay minerals found in the region whileMixture Modeling the AVIRIS Image
Much higher errors were found using AVIRIS imagery, illite and muscovite exhibit similar spectral features. How-

ever, kaolinite has a higher E than illite in the six end-which has a much higher signal-to-noise ratio. When the
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peared to be realistic as high proportions were restricted
to the river valleys where the annual shrub community
is found. However, for NPV much noise was still evident
though areas of high an low cover could be discerned.

In general, the magnitude of E reflected either the
amount of noise evident in the mixture maps, or the
cases when the materials were grossly under- or overesti-
mated. These results suggest that mixture modeling is
much more susceptible to noise than spectral matching.
Confusion between spectrally similar endmembers is an
inevitable consequence of noisy data, and, even with a
small number of endmembers, noise exerts a significant
influence on the proportions estimates of the lowest con-
trast materials.

As with the rocks, problems were found when trying
to quantitatively validate the mixture modeling vegeta-
tion cover estimates. To determine the advantages and
limitations of remote sensing approaches to measuring
vegetation cover, we need to compare them to the prosFigure 5. SWIR spectra of the soils with various amounts of
and cons of the ground measurements themselves. Holmillite/muscovite and kaolinite. Spectrum A contains 36.5% clay

(19.9% muscovite/illite and 16.5% kaolinite), spectrum B con- et al. (1984) found large differences between different
tains 10.5% clay (7.3% muscovite/illite and 3.2% kaolinite), and methods of measuring vegetation cover on the ground
spectrum C contains 21.3% clay (16% muscovite/illite and and between different observers using the same tech-5.3% kaolinite).

niques. Any field survey that covers the same number of
sites as the AVIRIS imagery (313,344 pixels) would need
to use more than one observer. By employing two meth-member solution and was dropped. This occurs because
ods of estimating vegetation cover in the field, and inthe kaolinite endmember is far from pure; no samples
one case two observers, it was possible to gain a limitedwe collected contained more than 24.9% whereas the
insight into the errors associated with the field measure-other clays are found in higher amounts.
ments. We found an 8% difference in total cover esti-For NPV and green vegetation, changes in both the
mates between observers interpreting the same photo-influence of noise on the mixture maps and the magni-
graphs, but a 40% or more difference between the twotude of the proportions estimates occurred as the num-
methods of vegetation cover estimation implemented byber of endmembers was reduced, even though they al-
the same observer. Table 5 shows the comparison of allways provided a lower E than discarded endmembers.
sites and all methods. The photographic line interceptFor the green vegetation with five endmembers the pro-

portions estimates were largely free from noise, and ap- provides consistently higher cover than the line intercept

Table 4. Error on the Proportions Estimates (E) for A) the Synthetic Image,
B) the Nine Endmember Mixture Analysis of AVIRIS Data, C) the Seven
Endmember Mixture Analysis of AVIRIS Data, D) the Six Endmember
Mixture Analysis of AVIRIS Data, E) the Five Endmember Mixture
Analysis of AVIRIS Dataa

Material A B C D E Confusion

Talc 0.009
Epidote 0.014
Pyrophyllite 0.008
Alunite 0.013
Muscovite 0.018 0.106 0.078 0.056 0.029
Illite 0.037 0.153 0.087 0.036 0.036
Calcite 0.015 0.257 0.019 0.013 0.009
Kaolinite 0.015 0.242 0.109 0.067 Drop Muscovite
Gypsum 0.024 0.246 0.099 Drop — Muscovite
Dolomite 0.017 0.267 Drop — — Calcite
Montmorillonite 0.012 0.297 Drop — — Muscovite
NPV 0.054 0.192 0.016 0.016 0.015
Green vegetation — 0.128 0.028 0.027 0.009

a The confusion column shows which material the discarded endmember was confused with.
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Table 5. Accuracy Assessment for Mixture Modeling Estimates of Vegetation Cover

Site 1 Average
Soil and Site 2 Site 3 Site 4 Absolute

Background Litter Calcite Muscovite Kaolinite Difference

Total vegetation cover
Photographic line intercept as

ground truth 87 10.5 21 15.5
Line intercept 40.3 8.6 13.9 9.3 14.0
Mixing 66.1 39.4 6.4 5.4 18.9

Line intercept as ground truth 40.3 8.6 13.9 9.3
Photographic line intercept 87 10.5 21 15.5 14
Mixing 66.1 39.5 6.4 5.4 17.3

Green vegetation cover
Photographic line intercept as

ground truth 13 2.5 7 4.0
Mixing 3.6 2.1 6.4 4.2 2.7

NPV cover
Photographic line intercept as

ground truth 74 8 14 11.5
Mixing 62.5 37.4 0 1.2 16.2

due to the fact that the former technique is better at validation sites is too small to draw firm conclusions,
green vegetation cover estimates seem to be remarkablyincluding small plant parts in the cover estimates; how-

ever, the results of the mixture modeling shows no con- precise considering that proportions are low and each
site exhibits a different background. NPV cover estimatessistent pattern.

The average absolute difference between the “ground are poor, however, and this can be largely explained by
the noise evident in the NPV mixture map. The differ-truth” and the mixture model results has been calculated

to provide a single figure estimate of precision. As there ence in precision of the green and NPV cover estimates
is anticipated by E underlining its utility as an indicationare clearly problems in deciding what is the truth on the

ground, these figures have been calculated using each of mixture model performance even when there are too
few pixels to characterize the noise.ground-based method as the truth. It is clear that the

differences in total cover estimates between all three The high errors associated with NPV limit the use-
fulness of mixture modeling for the applications thattechniques is high. It is marginally lower between the

two field estimates (614%) than between either of the need total vegetation cover outlined in the second sec-
tion. This raises the question, “is it possible to accuratelyfield estimates, and the mixture model estimates (617.3

and 618.9). However, because the ground estimates estimate NPV cover using mixture modeling of SWIR
imaging spectroscopy data?”. Table 6 summarizes theused in this calculation were acquired by one observer,

the loss of precision due to different observers is not limited literature on the errors associated with green and
NPV proportion estimation using SWIR wavelengths.considered in these figures so that the errors for the field

measurements are underestimates. The results show that these estimates are highly sensitive
to quantization, and other noise effects and that NPV isTable 5 also shows the precision of the green and

NPV cover estimates individually. Though the number of extremely hard to estimate accurately. The synthetic im-

Table 6. Summary of the Literature on Estimates of the Errors Associated with Green and NPV Proportion Estimationa

E for Number of Noise and Image
Green Vegetation E for NPV Materials in Image Quantization Type Source

0.084 0.181 5 SNR 50:1 for 50% GER Mackin et al. (1990)
albedo

0.119 0.260 7 SNR 50:1 for 50% GER Mackin et al. (1990)
albedo

0.256 0.389 6 Rounding from Synthetic Drake (1992)
real to byte

0.266 0.404 6 Rounding from Synthetic Drake (1992)
real to byte 1 1

DN noise

a The GER image was acquired by the GER imaging spectrometer.
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age used in this study produced a low E for NPV when meant that it could not be used to provide a quantitative
measure of the precision of the mixture model.compared to those in Table 6. Much higher errors were

found by Settle and Drake (1993) in a similar situation For vegetation, mixture modeling supplied more
useful information than spectral matching did as the ap-where quantization was the only form of noise. The large
plications outlined in the second section require abun-difference in the E for NPV between the two images
dance estimates of vegetation for all image pixels, butmust be due to a difference in the contrast, showing that
spectral matching only outlined a few areas of high NPVthe precision of NPV proportion estimation is highly
and green vegetation cover. The spectra of the differentscene-dependent.
plant parts showed that, though they exhibit large differ-Though these results suggest that the precision of
ences in reflectance in the visible and near-infrared, inNPV cover estimates, and thus total vegetation cover, is
the SWIR the canopies can be approximated adequatelypoor, so are field estimates. Though it is hard to improve
as a mixture of an NPV component and a green vegeta-on field estimates (Holm et al., 1984), it is easy to sug-
tion component. Though mixture modeling estimates ofgest ways of improving remote sensing estimates. The
green vegetation cover were precise, NPV cover esti-factors that can be manipulated to improve the precision
mates, and thus total vegetation cover, showed poor pre-of mixture modeling NPV cover estimates are noise,
cision as they were heavily influenced by noise.quantization, spectral range, and spectral resolution. As

the signal-to-noise ratio of AVIRIS has consistently im-
proved since our data were acquired, better cover esti- Steve Briggs, the British National Space Centre (BNSC), and

Reading University are thanked for funding the field work andmates should now be obtainable; however, a scanner
image acquisition. Thanks also to Steve Plummer for help in thewith a very high signal-to-noise ratio collecting real data
field and calculation of some of the vegetation cover estimates,is probably needed to consistently acquire precise NPV and to Chris Elvidge for helpful discussions on the vegetation

cover estimates. of Nevada and for providing access to a spectroradiometer.
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